

FLAVOR TEXT GENERATION
FOR ROLE-PLAYING VIDEO GAMES

Judith van Stegeren

FLAVOR TEXT GENERATION
FOR ROLE-PLAYING VIDEO GAMES

DISSERTATION

to obtain
the degree of doctor at the Universiteit Twente,

on the authority of the rector magnificus,
prof. dr. ir. A. Veldkamp,

on account of the decision of the Doctorate Board
to be publicly defended

on Friday 25 March 2022 at 16.45 hours

by

Judith Emma van Stegeren

Born on the 29th of September, 1990

in Utrecht, The Netherlands

This dissertation has been approved by:

Supervisor prof. dr. D.K.J. Heylen
Co-supervisor dr. M. Theune

This publication is part of the project
Data2Game (with project number 055.16.114)
of the research programme Professional Games
for Professional Skills which is financed by the
Dutch Research Council (NWO).

The research reported in this thesis has been
carried out at the Human Media Interaction
(HMI) research group of the University of
Twente.

SIKS Dissertation Series no. 2022-1
The research reported in this thesis has been
carried out under the auspices of SIKS, the
Dutch Research School for Information and
Knowledge Systems.

DSI Ph.D. Thesis Series No. 22-001
ISSN: 2589-7721
Digital Society Institute
P.O. Box 217, 7500 AE Enschede, NL

ISBN: 978-90-365-5310-0
DOI: 10.3990/1.9789036553100

Typeset with LATEX
Printed by Ipskamp
Coverdesign by Meteoriet Design
Copyright © 2022 Judith van Stegeren, The Netherlands.

Graduation committee:

Chair / secretary prof. dr. J.N. Kok
Supervisor prof. dr. D.K.J. Heylen
Co-supervisor dr. M. Theune

Committee members:

Prof. dr. F.M.G. de Jong University of Twente, Enschede, NL
Prof. dr. G.J. Westerhof University of Twente, Enschede, NL
Prof. dr. ir. P. Spronck Tilburg University, Tilburg, NL
Prof. dr. E. Reiter University of Aberdeen, Aberdeen, UK
Dr. M. Cook Queen Mary University of London, London, UK

Paranymphs:

Dr. L. Gatti
Dr. J.B. van Waterschoot

vi | Contents

Contents

1 Introduction 1
1.1 Narrative and text in video games 2
1.2 Flavor text . 5
1.3 Research context . 7
1.4 Key issues . 9
1.5 Aim, scope and research questions 12
1.6 Organisation . 14

I Background 17

2 Procedural content generation 19
2.1 Definition and applications . 19
2.2 Key concepts . 21
2.3 Approaches . 23
2.4 Open problems and debates . 26
2.5 PCG for textual assets . 28
2.6 Games and coherence . 36
2.7 Conclusion . 40

3 Natural language generation 43
3.1 Definition and applications . 43
3.2 Approaches . 44
3.3 Popular NLG methods for PCG . 47
3.4 Story generation . 52
3.5 Evaluation . 56
3.6 Conclusion . 60

II Flavor text generation 61

4 Low-cost story generation in the wild 63
4.1 Introduction . 64

viii | Contents

4.2 Related work . 65
4.3 Data . 66
4.4 Text generation methods . 68
4.5 Methods for narrative coherence 71
4.6 Discussion . 75
4.7 Conclusion . 79

5 Generating flavor text headlines 81
5.1 Introduction . 82
5.2 Related work . 83
5.3 Description of Churnalist . 86
5.4 Text generation with Churnalist 96
5.5 Evaluation . 98
5.6 Conclusion . 112

6 Rebuilding Churnalist with GPT-2 115
6.1 Introduction . 115
6.2 Method . 116
6.3 Error analysis . 120
6.4 Discussion . 123
6.5 Conclusion . 126

7 NPC dialogue generation from annotated video game quests 129
7.1 Introduction . 129
7.2 Related work . 132
7.3 Method . 134
7.4 Evaluation . 139
7.5 Discussion . 147
7.6 Conclusion . 149

8 Collecting video game corpora 151
8.1 Introduction . 152
8.2 Related work . 152
8.3 Quality of video game corpora . 155
8.4 Obtaining new video game corpora 158
8.5 Datasets . 160
8.6 Discussion . 174
8.7 Conclusion . 178

III Conclusion 179

9 Conclusion 181
9.1 Summary . 181

Contents | ix

9.2 Revisiting the research questions 183
9.3 Directions for future work . 189

Bibliography 193

Summary 223

Samenvatting 227

Acknowledgements 231

About the author 235

SIKS Dissertation Series 239

1

1
Introduction

In 50 years time, video games have evolved from a niche entertainment medium
to something that is present in almost every part of society. Video games are
now part of our culture, just like other ubiquitous media such as books, music
and films [193]. In 2020, they are not only used for entertainment, but also for
applications such as education, sports, research and therapy.

Even though the video games industry is maturing, developing video games
remains expensive, complex and challenging. In the book Blood, Sweat and Pix-
els [235], journalist Jason Schreier describes the game development process for
ten well-known games, including Stardew Valley [18], Diablo III [38] and Pil-
lars of Eternity [197]. Schreier interviewed hundreds of game developers to find
out why developing games is still so complex, even though the games industry
has been around since the 1970s. Schreier suggests that games are intrinsically
complex to develop. Video games are interactive and non-linear; the tools and
technology required to develop them is constantly changing; and they revolve
around the elusive concept of ‘fun’, which is hard to define, hard to measure
and also hard to plan and predict. Amato [5] described additional challenges
in the game development industry: game development teams typically work
within strict technical boundaries, while also juggling scheduling and budget
constraints, and requirements from publishers and distribution platforms. The
cost of creating games also keeps increasing because players expect increasingly
more playable content per game. Simultaneously, there is a growing demand for
games that incorporate forms of adaptivity and personalization.

Procedural content generation (PCG), i.e. creating new game content auto-
matically with software, is a technique that can be used to solve these problems
[5, 37, 240]. Procedural generators can be used for scaling up the creation of
game assets, i.e. all files, data and code that form the building blocks of a video
game, and personalizing game content. In this thesis, we investigate procedural
content generation as a way to scale up the creation of textual video game assets,
such as character dialogue, stories, item descriptions, and other in-game text. We

1

2 | Chapter 1

are specifically interested in flavor text: textual game assets that convey so-called
flavor (or backstory) to the player. In the coming sections we will describe these
concepts in more detail.

In Section 1.1, we start with a short description of the role of narrative and
text in video games. In Section 1.2 we will zoom in on flavor text, which is a
specific type of video game text. We will then introduce the two most relevant
research fields for the work in this thesis, namely procedural content generation
and natural language generation, in Section 1.3. Section 1.4 describes a few
important issues that we should take into account when researching flavor text
generation for games. In Section 1.5 we will describe the research goal and
research questions that underlie the work in this thesis. We end this chapter with
a short overview of the rest of this thesis.

1.1 Narrative and text in video games

In the early 1980s, video games had simple graphics, such as Pacman and Tetris,
or were fully text-based, such as the adventure game Zork [138]. Recent video
games, such as Red Dead Redemption 2 [219] and The Witcher 3 [60], have graph-
ics that are almost photo-realistic in quality. Although video game graphics have
evolved considerably since text-only adventure games, written text still plays an
important role in video games, as it is a straightforward way of communicating
the game’s narrative to the player.

According to Dansky [79, p. 5], the purpose of game narrative is to provide
a framework or a justification for the gameplay encounters happening in the
game. It achieves these goals through three techniques: immersion, reward and
identification.

Immersion is the state of mind where a person is completely absorbed in what
they are doing. In the context of games, immersion is the feeling that the real
world temporarily has ceased to exist, and the game world is the player’s reality.
Game narrative provides context for game events, and a sufficiently believable
context provides immersion. Narrative can also function as a reward for the
player’s effort and progress, and can motivate the player to keep moving forward
throughout the game. Finally, narrative can also help with identification. Well-
written narrative helps the player to identify and distinguish the elements of the
game (world), e.g. dangerous monsters, friendly allies, and useful items. This
information contextualizes the events in the game and provides justification for
them. It also establishes the player’s place in the game world, and helps the
player make decisions.

In handbooks for game writers [23, 84, 83], we can find examples of the
various types of text that game writers have at their disposal to communicate
game narrative via text: linear narratives, branching narratives, dialogue, help
text, scripts for cut scenes and cinematics, voice actor directions and strategy
guides to accompany the game. Which of these types of text are present in

1

Introduction | 3

Figure 1.1: Screenshot from Zork: The Great Underground Empire [138], which shows the
opening lines of the game, and a few player actions. In Zork, the player interacts
with the game by typing natural language text, such as ‘enter house’ and ‘use
lamp’. In this screenshot, the player (character) is reading a leaflet. The leaflet
can be found in the mailbox of the white house, which is the starting location of
the game.

Figure 1.2: Screenshot from Red Dead Redemption 2 [219]. Main character Arthur Morgan
reads a letter. The letter points towards an in-game location. If the player sub-
sequently visits this location, they can start a new mission (a quest, or a part of
the game’s storyline).

1

4 | Chapter 1

Figure 1.3: Screenshot from the introduction animation of platform action game Super
Metroid [196].

a given game depends on various aspects of the game, such as the genre of
the game (action game, platform game, roleplaying game, first-person shooter,
puzzle game), the genre of the game’s narrative (horror, fantasy, science fiction,
romance), the setting and gameplay mechanics.

Some game genres lean more heavily on narrative than others. A platform
game such as Super Metroid [196] has hardly any in-game text. The game opens
with a short animation in which the main character Samus talks about her past,
see Figure 1.3. Apart from short intro and outro animations, the game features
no explicit textual narrative.

In contrast, role-playing game Morrowind [28] depends almost fully on text,
see Figure 1.4 and 1.5. The screenshots demonstrate the two most important
types of in-game text. In Morrowind, important in-game events are logged in the
player character’s journal (Figure 1.4), and most quests can only be solved by
searching for clues hidden in non-player character dialogue (Figure 1.5).

Fighting games and multiplayer strategy games are often light on narrative,
whereas adventure games and (computer) role playing games often depend al-
most entirely on narrative: the play experience through the game corresponds
precisely to the character growth through the course of the narrative [79].

The research in this dissertation focuses on game narrative in role-playing
video games: video games where the player takes on the role of a virtual char-
acter. Roleplaying games (RPGs) are often narrative-driven [190] and allow for
many different interesting types of narrative content. A survey by Ip [139] shows
that RPGs are particularly narrative-heavy compared to other video game genres.
This means, as we will see in later chapters, it is a perfect application domain for
text generation research.

1

Introduction | 5

Figure 1.4: Screenshot from Morrowind [28]. All important game events are recorded in the
player character’s journal, which acts as a narrative logbook for the entire game.

1.2 Flavor text

Backstory, or flavor, is one of the techniques that game writers use to draw the
player into the game world. Consequently, flavor text is text that helps a player
with experiencing immersion.

The term flavor text can mean different things. Many researchers and prac-
titioners use the term in their writing, but very few people actually define what
they mean by it. Academic texts on procedural content generation for video
games often distinguish between functional en decorative game assets [271,
127]. A game asset is decorative if it can be removed from the game without
breaking the game. In research, the term flavor text is used interchangeably with
decorative textual game assets.

However, text books on game writing from the video games industry stress
the importance of embedding flavor in every piece of text [23, 84], which would
suggest it is hard to make this strict distinction between functional and decorative
text in practice, and that every functional in-game text should be considered
flavor text as well. Furthermore, although flavor text is often decorative, it is
not necessarily unimportant. This goes especially for role-playing games, where
immersion is a key aspect of the gameplay. Since flavor text helps to create

1

6 | Chapter 1

Figure 1.5: Screenshot from Morrowind [28]. Most of the game narrative is communicated
via text boxes with NPC dialogue, such as here, where the player character is
having a conversation with an Imperial soldier named Sellus Gravius.

this immersion, it can be considered an important ingredient of a role-playing
game. In other words, it is hard to define flavor text based on its (lack of)
functionality. For the remainder of this dissertation, we define flavor text as any
text that communicates game narrative to the player.

This dissertation focuses on generating flavor text for role-playing games.
Flavor text is especially suitable for experimenting with new natural language
generation, as its primary function is to immerse the player, not to inform. Conse-
quently, the truthfulness of the content is less important than the affect it evokes
in the player and whether the style of the text is coherent with the game. Chang-
ing flavor text will typically not break a game, which is also an added benefit.

Flavor text is originally a term from the world of board games and tabletop
games. War games, table top games where players reenact battles using minia-
tures, often come with a booklet with information about famous battles and their
historical context. When people started to play fictional war games, for exam-
ple in fantasy and science fiction settings (such as Warhammer), these booklets
turned into elaborate descriptions of the game setting and backstories for the
corresponding fictional armies [285]. Similarly, children’s toys and collectables
from the 1980s, such as Transformers and G.I. Joe, featured elaborate descrip-

1

Introduction | 7

Figure 1.6: Magic: The Gathering card ‘Pacifism’, from the expansion set ‘Ikoria: Lair of
Behemoths’ (2020). Art by Kev Walker. The italicized text at the bottom of the
card is flavor text. In Wizards of the Coast’s official description of Magic: The
Gathering [286], we can read that flavor text has no effect on gameplay; it’s a bit
of story information about the card.

tions and backstories of characters on their packaging.
Probably the first game to use in-game flavor text is trading card game Magic:

The Gathering [100]. Figure 1.6 shows a Magic: The Gathering card, with itali-
cized flavor text at the bottom of the card. According to Dave Howell [135], who
was production manager of Magic: The Gathering in 1993 [192], the designers
had some space left on the game cards, and the team decided to fill this space
with a quote that provides context or backstory for the entity that is represented
by the card. Initially called ‘color text’, referring to the ‘color commentary’ by
sports commentators, the italicized quotes were sourced from the bible or liter-
ature and meant to add variety and interest to the cards. Flavor text for Magic:
The Gathering evolved to an important way of communicating the game lore to
the players, extending other methods of conveying the game’s narrative such as
marketing materials, images, websites, strategy books, etc. [77]

1.3 Research context

There are two research fields that are especially relevant for flavor text gener-
ation: natural language generation (NLG) and procedural content generation
(PCG). I will introduce each field in the sections below. In Chapter 2 and 3,

1

8 | Chapter 1

developments in these research areas that are relevant to this thesis will be dis-
cussed in more detail.

1.3.1 Natural language generation

Natural language generation is the research field that focuses on the automatic
creation of text from data. The input for natural language generation systems
can consist of text (text-to-text generation), images, facial expressions, human
gestures (image-to-text generation), or other types of data (data-to-text). NLG
systems can write many different types of text, that span the breadth of human
writing: from news articles, sports game reports, exams, questionaires and fi-
nancial reports to poems, letters, jokes, movie scripts and entire novels. Another
prevalent example of text generation technology in day-to-day life is machine
translation, such as GoogleTranslate, which uses text-to-text generation.

The pipeline architecture as described by Reiter and Dale [213] has been the
leading architecture for natural language generation systems for a long time.
This architecture divides the generation process in a number of distinct steps.
An alternative to the pipeline architecture is end-to-end generation, a method
in which a singular, integrated system takes care of all generation steps in one
go. In the past three years, end-to-end generation based on Transformers [275,
85, 209], a type of neural architecture, has increased in popularity because of its
good performance for a wide variety of NLP and NLG tasks.

The ultimate goal in NLG is, of course, to build systems that can write texts
that are on par with human writing. Given this goal, NLG systems are typically
evaluated on output text quality, using properties such as fluency and grammat-
icality. Depending on the aim of the specific system, they can also be evaluated
on properties like factualness, common sense, internal logic, coherence, linguis-
tic style, and affect. Evaluating NLG systems is a research field in its own right,
as there are many ways to do this. We can conduct automatic evaluations with
statistical metrics, or manual evaluations with human judges. NLG systems can
be evaluated in isolation, in an artificial context, or in a real-world context.

1.3.2 Procedural content generation

Procedural content generation is the research area that deals with the automatic
creation of video game content or video game assets, such as levels [260], tex-
tures [93], music [205], quests [199], puzzles [80], dialogues [164] and narra-
tives [153]. Instead of generating content of a particular type, some researchers
[97, 72, 117] investigate the automatic creation of entire video games. In-game
texts are also a type of game content, but compared to game assets such as video
game levels and textures, there is little academic research in that area. However,
recently game developers have been increasingly experimenting with procedural
narrative [241].

1

Introduction | 9

When it comes to evaluating procedural content generation systems, the eval-
uation goals are similar to those of NLG systems, but not the same. Both fields
evaluate generated artifacts on two types of properties: form and function. NLG
systems are typically evaluated on textual properties such as grammaticality, clar-
ity and coherence, and properties that fit the intended application of the text
generation. In procedural content generation for games, the goal of generating
artifacts is already given: inclusion in a video game, possibly after manual post-
processing (refining, filtering, rewriting) the output. Consequently, there is an
explicit focus on video game related aspects such as fun and gameplay in PCG
evaluation.

Creativity, especially how we can define and measure it, also plays an impor-
tant role in PCG research. Since generated game assets are often placed in the
game together with human-created content, the PCG content should not be eas-
ily discernible from manually created content. Because of this, procedural con-
tent generation research also builds on the field of affective computing, which
deals with computational models of emotion, and computational creativity [69,
19], which researches how we can create creative artifacts automatically, such as
dance, theater, music, paintings, and poems.

1.4 Key issues

There are three key issues that should be addressed if we want to investigate text
generation for video games. Firstly, there are multiple research gaps that need
to be addressed to increase the maturity of flavor text generation and text gen-
eration for games in general. Secondly, we need to investigate text generation
while taking game-level coherence into account, something that is still largely
unexplored in existing research. Finally, we need to address practical problems
with NLG systems, which stand in the way of adoption of NLG by the game de-
velopment industry. We will discuss these issues in the following three sections.

1.4.1 Research gaps

Although PCG is maturing as a field, there is very little research on generating
textual game assets. Existing studies generate either entire games or specific
game assets. If the generated assets give rise to in-game text, such as quests or
characters, this text is typically produced using rule-based NLG methods, such
as templates or grammars, e.g. [179, 229, 119, 117]. Rule-based NLG methods
have the advantage that they are very predictable and robust, which are impor-
tant properties for game designers. However, this means that most PCG research
that touches on textual assets does not reflect the enormous developments of
natural language generation in the past few years, that are driven mostly by
statistical and machine learning methods.

1

10 | Chapter 1

The same applies to video games as application for natural language gener-
ation research. Although Gatt and Krahmer [101, p. 137] identify games as a
promising application domain for natural language generation, video games are
not yet considered seriously as application domain for natural language genera-
tion research. If we search the anthology of the Association for Computational
Linguistics1, the most important repository for computational linguistics research
papers, for papers mentioning ‘video games’, we find very few relevant research
papers. This can be explained by the dominant theme in NLG research: natural
language generation systems discussed in academic literature tend to generate
non-fiction text, for information-driven applications such as expert systems and
report generation systems. Although there is a research community that focuses
on generating fiction, such as stories, poems and jokes, this is a relatively a small
community within the computational linguistics field.

1.4.2 Coherence

Coherence, or lack of coherence, is a property of text. However, the word ‘coher-
ence’ has not been used consistently in research literature. Spencer and Fitzger-
ald [247] reviewed the literature for coherence and already found 27 different
definitions of coherence. They observed that the term coherence was often not
defined at al, or used similarly as cohesion. According to Morris and Hirst [189],
coherence is a term for making sense; a text is coherent if it makes sense. They
contrast coherence with cohesion, which refers to ‘sticking together’. If a text is
cohesive, this means that ‘the text all hangs together’. In this thesis, we follow
the definitions of Karmiloff-Smith [144], which where also used by Shapiro and
Hudson [236] in their work on narrative analysis. This seems the most relevant
definition for the work in this thesis, given that we are also talking about nar-
ratives, albeit for video games. Karmiloff-Smith defines coherence as the tem-
poral/causal structure of story content, and cohesion as the linguistic devices
(anaphoric, connective, etc.) that tie a span of sentences together [144, p. 62].
Narratives can be coherent without being cohesive, and vice versa. Shapiro and
Hudson discuss both concepts in the context of narratives produced by children.
To create a coherent story, all parts of the story must be structured so that the
entire sequence of events is interrelated in a meaningful way. A cohesive story is
created by using linguistic reference devices, such as connectives, that tie a span
of sentences together to form a whole [236, p. 960].

A text can be coherent at different text levels: at the sentence level, at the
paragraph level, or at the level of the entire text. The latter is called global
coherence. We can also analyse whether multiple pieces of text form a coherent
whole. If we are looking at coherence between multiple pieces of text, we call it
intertextual coherence.

Intertextual coherence is especially relevant for narrative-heavy video games,

1ACL Anthology, https://aclanthology.org/

1

Introduction | 11

where the player typically gets to know the game narrative and game setting via
a collection of short texts (dialogues, item descriptions, cut scenes). The player
does not read and interpret this flavor text in isolation, but in the context of the
larger game narrative. Consequently, when we generate video game text we need
to consider another level of coherence: apart from local coherence (sentence
level, paragraph level) and global coherence, flavor text should be coherent at
the game level, which we define as follows: a piece of flavor text is coherent at
the game level if a reader perceives a plausible connection between the game
(game setting, game world, game genre, game narrative) and the text.

1.4.3 Practical problems

Amato [5] and Short and Adams [240] name various practical problems that
stand in the way of large-scale adoption of procedural content generation by the
games industry. These problems also hold for text generation in particular. They
can be broadly divided into three categories: risk, cost, and the gap between
research and practice.

Risk

When using procedural content generation, the consistency and quality of gen-
erated assets is not guaranteed. Using live procedural content generation, where
generated content is directly used in a video game, might therefore be too risky
for publishers, compared to working with human designers [240]. This can be
mitigated by only using generators to pre-generate content, and letting human
editors check, filter, and polish generated content before including it in a game.
Similarly, high-budget games might aim for an explicitly ‘authored experience’
[37] [240, p. 7], i.e. a well-defined experience so that a player will experience
a game exactly like the authors intended. This is at odds with the variation and
flexibility inherent in procedural content generation. The inverse is also true;
if the procedural content generation is rule-based, and the set of rules relatively
small, the procedurally generated content might be too predictable, bland or bor-
ing for inclusion in a game! Because of the unpredictability and uncertainty of
procedural content generation, publishers and developers will often opt for the
more expensive but controllable approach: working with human-created content
instead of incorporating procedural content.

Cost

Designing a procedural generator takes time and expertise. Depending on the
chosen method for generation, a developer needs to create rules, templates or
grammars, perform data-processing on text corpora, or train one of more ma-
chine learning models. Even with sophisticated procedural generators, the qual-
ity of the output cannot be guaranteed. According to Amato [5], this keeps many

1

12 | Chapter 1

producers of video games from using PCG. An often-heard argument for using
procedural content generation is that it saves time. Once an organisation has in-
vested in developing a procedural generator, it can create large amounts of game
content for free. However, in the case of text generation for games, we might just
be transforming the task of writing video game text to the task of building a text
generator. Since text generation experts are currently more rare than game writ-
ers, using procedural text instead of human-written text seems a costly choice
for game developers.

Gap between research and industry

Academic research tends to build on work from academia. In academic litera-
ture, new techniques are mostly applied on toy examples, which might not be
representative for industry practices. On the other hand, the game industry typi-
cally works with industry tools. If there is innovation, it comes from within these
companies, and tools might be kept in-company. New innovations might be kept
secret as intellectual property to keep an edge over competitors, and sharing or
publishing about new technology might not have high priority within companies.
Technology and code reuse between games from one development company is
not standard practice, let alone between games from different companies. On
the contrary: Schreier [235] describes that it is common practice to start from
scratch when a game company starts developing a new game. Even when game
industry innovations are shared within the game development community, many
of these innovations are published outside of the scope of academia. New tech-
nologies from industry might not be known to the research community, or they
are not investigated further because the techniques are not easily generalizable
across games. This divide between research and industry has led to a knowledge
gap in procedural content generation.

By choosing particular approaches for procedural content generation, these
problems can be mitigated. The knowledge gap can never be solved completely,
but by improving controllability and researching PCG techniques that are not
so costly, we can hopefully make procedural content generation for video game
text more accessible to the game industry. By working with realistic resources
as much as possible, e.g. industry-grade programming libraries and text from
real-world commercial games, we hope our findings translate better to games
industry practice than research that builds solely on academic resources.

1.5 Aim, scope and research questions

In Section 1.4 we described the key issues with regard to flavor text generation
for games: research gaps in NLG and PCG research, the lack of attention for
game-level coherence, and some practical problems that stand in the way of
wide-spread adoption of PCG in the game development industry. Given these

1

Introduction | 13

challenges, the main goal of the research in this dissertation is:

Research goal. To investigate and develop methods for generating coherent flavor
text for video games, while keeping in mind the risks and costs.

Since ‘video games’ is such a broad domain, we will focus on a specific subset
of games: role-playing video games. We will focus on role-playing games, because
flavor text is particularly useful for this type of game. The role of flavor text is to
help with immersion, and immersion is essential for role-playing games. We will
use role-playing games as a literary source for studying existing flavor text, and
as the application domain for our text generation outputs.

Most text generation research uses datasets that were not taken from com-
mercial video games, but from ‘research games’ or ‘toy examples’ written by re-
searchers or research participants. In order to mitigate the gap between industry
and research, we will use only commercial video games as use cases and data
sources. By using real-world data, we will hopefully improve the applicability of
our findings to industry.

The research goal is implemented via a set of research questions. We will now
list the research questions and describe the rationale behind each question.

As stated in Section 1.3, the existing work on text generation for games is
very limited. However, flavor text shares some characteristics with other types
of fiction. We start by investigating the existing methods for generating coherent
works of fiction. We focus specifically on methods that have been applied in the
wild, that might have been described outside of the scope of existing research
literature, in order to keep the methods usable in practice.

Research question 1. Which methods have been used in the wild for generating
coherent works of fiction?

Research question 1 will be addressed in Chapter 4. In this chapter, we dis-
cuss four methods for creating coherent long-form stories. One of these methods,
‘evoking coherence’, focuses on creating text that is perceived as coherent by read-
ers. In the follow-up chapters, we assess whether we can transfer this method
from generating works of fiction to generating coherent flavor text.

Research question 2. How can the ‘evoking coherence’ method from Chapter 4 be
adapted for generating coherent flavor text for video games?

This research question will be addressed in Chapter 5 and Chapter 6. The
pipeline architecture of Reiter and Dale has been a popular approach for NLG
systems for a long time. However, in 2018 researchers developed a Transformer-
based architecture for language models. This new architecture was popularized
by various open source libraries for NLP and NLG, which led to a wide-spread
adoption and fast increase in the number of online NLG systems, especially for
creative text generation. Transformers are able to produce highly coherent but
often non-factual outputs. We will investigate whether Transformers can be used
for flavor text generation:

1

14 | Chapter 1

Research question 3. How can we use Transformer-based language models to gen-
erate flavor text for video games?

This research question will be addressed in Chapter 6 and Chapter 7.
If we can use Transformers for flavor text generation, how does this approach

compare to a modular approach in terms of game development risk and cost?
We will compare the modular approach used in Chapter 5 with the Transformer-
based approach from Chapter 6 in the context of generating flavor text.

Research question 4. What are the advantages and disadvantages of rule-based
and Transformer-based approaches for generating coherent flavor text?

This question is explored in Chapter 5 and Chapter 6.
If we want to use data-driven NLG methods, such as language generation

using Transformers, we need training data from the video games domain. How-
ever, there is a scarcity of text data from video games, which constitutes a practi-
cal challenge that stands in the way of using NLG for generating coherent flavor
texts.

Research question 5. If we want to generate coherent flavor text using data-driven
NLG methods, what are the requirements for training data, and where can we find
data that fulfill these requirements?

This question is answered in Chapter 8.

1.6 Organisation

The remainder of this dissertation is organized as follows. The first part of this
dissertation contains two chapters that describe the two relevant research fields
of the work in this dissertation: procedural content generation (Chapter 2) and
natural language generation (Chapter 3).

The second part consists of chapters in which we address the research ques-
tions from Section 1.5. In Chapter 4 we explore contributions to NaNoGenMo to
find approaches for story generation in the wild. We then discuss how these
approaches could be applied to procedural text generation for video games.
In Chapter 5 we continue with the ‘evoking coherence’ approach from Chap-
ter 4, and incorporate this in a rule-based headline flavor text generator called
Churnalist. The text generator is then evaluated on language quality and func-
tionality. In Chapter 6 we describe a new version of Churnalist, which uses a
Transformer-based language model. We explain the training method and com-
pare the language quality of the two versions of Churnalist. Although the gen-
erator is meant for creating flavor text for games, both versions are based on
headlines data, i.e. non-video-game text. In Chapter 7 we apply the language
model training method to text from a video game. The language model is then
used to generate NPC dialogue, which functions as flavor text for role-playing

Introduction | 15

game quests. The language models from Chapter 6 and 7 require training data
for fine-tuning the model for a specific application. However, currently there
are not many video game corpora available. In Chapter 8 we describe potential
places where video game corpora can be found. We also discuss what consti-
tutes a high-quality video game corpus, and present three corpora from three
commercial role-playing games that can be used for future research.

In the final part of this thesis (Chapter 9), we provide a summary of the
various chapters. We then revisit the research questions and try to answer them
based on the findings of part 2. We reflect on our findings, and wrap up with
some ideas for future work.

16 | Chapter 1

Part I

Background

22
Procedural content generation

This chapter describes important concepts and relevant work in procedural con-
tent generation (PCG). We start by defining procedural content generation, and
describing the various applications of PCG in game development. We then give
an overview of the most common approaches: constructive methods, search-
based methods and methods based on logic solvers; machine learning methods
and methods that build on reinforcement learning. We also discuss two pop-
ular subtopics in PCG: generating assets that incorporate affect, emotions and
sentiment, and using real-world data for PCG. Finally, we discuss a series of chal-
lenges and open problems within the PCG field. This ends the general part of
this chapter.

Starting from Section 2.5 we focus on procedural content generation for tex-
tual assets, such as NPC dialogue, game narratives and flavor text. We describe
the most important work on PCG for text: authoring tools, generating stories
and quests, qualitative procedural content generation, dialogue and flavor text.
In Section 2.6 we discuss coherence in the context of game assets, and describe
various approaches for generating coherent procedural content from the litera-
ture.

2.1 Definition and applications

Procedural content generation (PCG) is the automatic creation of game content
through algorithmic means [288]. It is used in game development practice to
increase replay value, to reduce production cost and effort, to save storage space,
and as an aesthetic in itself [258].

A wide variety of game assets can already be produced automatically with
procedural content generation. Both in research and game development practice,
PCG has been used to create new game assets for video games, including textures
[93], music [205], maps [269], levels [260], narratives [153], dialogue [164],

2

20 | Chapter 2

quests [199]. Instead of investigating PCG for specific types of game assets, some
researchers [270, 74, 117, 73] have investigated procedural generation of entire
games.

PCG can be used to quickly generate large volumes of game content. A gener-
ator can function autonomously, or as part of an interactive process of AI-assisted
design, where a human designer and an algorithm work together to create game
content. According to Yannakakis and Togelius [288], content creation in video
game production is still largely manual, and this has grown into a bottleneck for
the game development process. Procedural content generation is often described
as a labor-saving technology, which game developers can use to scale up their
production volume, and create more game assets with fewer people.

One of the earliest examples of procedural content generation used in video
games is the dungeon crawling game Rogue [1]. Rogue used procedural content
generation to generate infinitely many new dungeons for the player to explore,
thus increasing the replayability of the game [5, 240]. Procedurally generat-
ing maps and levels is now common practice in many commercial role-playing
games, such as Diablo [40], Torchlight II [222], Rogue Legacy [61], and Pillars of
Eternity [197]. Indeed, Johnson [142] observed that PCG research has largely fo-
cused on game assets that make up virtual spaces, such as maps, terrains, cities,
buildings and trees.

In the 1980s, procedural content generation was also used to compress game
assets, so that large amounts of game content could be stored on very small
storage media. Elite [45], a space exploration game, used procedural content
generation for compression. It managed to store hundreds of star systems in a
few kilobytes of memory by representing each planet as just a few numbers. A
deterministic procedural content generator could then unpack these numbers to
complete star systems during gameplay [288]. At the moment, the storage size
constraint for video games, and consequently the applicability of PCG for com-
pression, is making a reappearance in games for mobile devices such as phones
and tablets [5].

In their book on procedural content generation for games, Short and Adams
[240] list some of the advantages of PCG.

When done right, procedural content generation can be used to make game
development more efficient. As procedural generators are often modular pro-
grams that create one type of asset, PCG can increase the possibility of code
re-use between games.

Procedural content generation can also be used for quality assurance. We can
formalize the meaning of a ‘correct’ or ‘high-quality’ game asset, and use a com-
puter to automatically check the quality of human-created and auto-generated
game assets. A computer is much better at following formal quality constraints
than a human, and is less prone to accidental mistakes, so combining a formal
definition of quality with a procedural generator can lead to higher quality game
assets. Note that we can only take this approach if the quality requirements can

2

Procedural content generation | 21

be formalized and represented in a format that the generator understands. For
example, we could formalize a valid dungeon room in an exploration game as ‘it
has at least one entry and one exit, and contains a monster and a piece of trea-
sure’. However, a requirement such as ‘a dungeon room should be fun to explore’
would be very hard to formalize and consequentially less suitable for automatic
quality assurance or generation.

Content generators can also produce large volumes of game content with
much more detail and variation than a team of human designers could hope to
create in the same amount of time. Consequentially, PCG has allowed small game
development teams and independent game developers to create large games,
something that would not have been possible if all assets had been created man-
ually [37]. Additionally, PCG can use simulations to add detail and realism to a
greater extent and scale than any human designer could do manually [240]. For
example, software SpeedTree, a procedural generator based on L-systems, is used
in the games industry to generate thousands of variations of realistic-looking 3D
trees.

Apart from solving very practical problems in the game industry, procedural
content generation has additional benefits, both for video game developers and
players. It can be used for personalization and adaptation. Lopes and Bidarra
[175] discuss different forms of adaptivity for video games in their survey paper.
Yannakakis and Togelius [288] proposed experience-driven PCG, i.e. PCG that
takes player experience and affect into account during generation, can make
it easier to tailor content to individual players or groups of players. PCG allows
players to have a unique game experience; if the game generates assets on the fly,
no two players will see the same content. This can even give rise to new modes
of play, for example when players learn the inner workings of the generator, and
start playing with that.

Besides game content creation, procedural content generation research is also
starting to contribute to other tasks in game development. Machine learning
allows us to build mathematical models of existing game content. These models
can be combined with procedural content generators for a variety of purposes,
such as game content repair [260, 141], game content recognition, game content
critique and game content analysis, i.e. analyzing game content for properties
such as relatedness, uniqueness, difficulty, and playability [258].

2.2 Key concepts

2.2.1 Generation

We can distinguish between online and offline procedural generation. Online gen-
eration means game content is generated on-the-fly, at runtime, whereas offline
generation refers to generation during game development.

Procedural content generation algorithms can be categorised according to

2

22 | Chapter 2

the level of control that is available to the user of the generator. A generator that
converts an input into a game asset by a set of random dice rolls offers relatively
little control. On the other hand, some generators allow the designer to specify
various parameters that are taken into account during generation. At the end of
this side of the spectrum we find co-creation or mixed-initiative PCG tools. Liapis
and Yannakakis [168] explored how mixed-initiative design can be applied for
computational creativity systems.

Some generators always generate the same output given the same input,
which is deterministic generation. Provided that the input is smaller than the gen-
erated output, deterministic generation can be seen as a form of (de)compression.
When a generator is non-deterministic, a single input can lead to various outputs.
Stochastic, random, probabilistic or aleatoric generation means that the output
of the generator is non-deterministic and dependent on chance.

Outputs of a procedural content generator can be placed in an abstract math-
ematical space called the generative space. Game content space on the other hand
is the mathematical space of all possible game content, regardless whether it
was created manually or procedurally. Similarly, game content generator space is
the space of all possible content generators. Although these latter concepts are
very abstract, they are useful when we try to visualize or compare the generative
capabilities of a specific generator or approach.

2.2.2 Game content

Togelius et al. [271] distinguish between necessary and optional game content.
Necessary content is required by the players to progress in the game, whereas
optional content is that which the player can safely ignore. The difference be-
tween necessary and optional content is important to take into account during
generator design, as generation flaws in necessary content can lead to critical
errors and break the game. On the other hand, optional content can safely be
ignored by the player, so quality assurance is less important for this type of game
assets.

In their survey on PCG with machine learning, Summerville et al. [258] dis-
tinguish functional game content and cosmetic game content. Functional game
content is game content that is directly related to the game mechanics. The au-
thors define functional content as artifacts that, if they were changed, could alter
the in-game effects of a sequence of player actions. Cosmetic game content is
anything that is not functional. The authors seem to have made this distinction
mainly to filter out purely decorative game content such as images (sprites, tex-
tures) and sound assets. Their survey focuses on functional game content. The
authors argue that cosmetic game content can be generated, consumed and eval-
uated in isolation, in contrast to functional game content. Additionally, there is
already much research on generating purely decorative content outside of games.
The authors note that there is a difference between their functional–cosmetic di-

2

Procedural content generation | 23

chotomy and the necessary–optional dichotomy of Togelius et al. [271], as it is
possible to have optional functional content and necessary cosmetic content. De-
pending on how flavor text is used in a game, and where it occurs, a piece of
flavor text can be necessary or optional, functional or cosmetic.

2.3 Approaches

In this section, we broadly describe the most important approaches for procedu-
ral content generation. These approaches are generally independent of the type
of game content, e.g. text, sound or images. We start by describing constructive,
search-based and solver-based methods. Then, we describe machine learning
and reinforcement learning approaches. Finally, we take a deeper look at two
applications of PCG: generating assets that incorporate affect, and generating
assets from real-world data.

2.3.1 Constructive, search-based and solver-based methods

Constructive methods create content in a data processing pipeline without evalu-
ation. The generator simply constructs output from its input, and is finished. It
does not check whether the output is valid according to some set of constraints.
According to Summerville et al. [258], this is currently the prevalent approach
to PCG in the games industry.

On the other hand, search-based methods search a generative space for out-
puts that fulfill a specification or maximize a fitness function. In their seminal
paper on search-based PCG, Togelius et al. [271] describe the related generate-
and-test approach for PCG. Generate-and-test algorithms have both a generator
and a testing component. After generating a potential output, the generator
evaluates the output with the testing component to check whether it follows the
desired specification. If the output does not pass the evaluation, the content is
discarded and the generator generates more outputs, until its output succesfully
passes the test criteria.

Solver-based methods use logic programming to find outputs that fulfill certain
logical constraints. [243]

These three methods have as disadvantage that the building blocks of the
generator, i.e. its algorithms, parameters, constraints, etc., are generally created
manually, which is why they might not scale as well as methods that use machine
learning. [258]

2.3.2 Machine learning

Procedural content generation has profited from the advances in machine learn-
ing. The recently renewed interest in neural networks has led to an increase in
research that investigates machine learning techniques for generation, such as

2

24 | Chapter 2

Generative Adversial Networks (GANs). The basic idea of generative machine
learning is to build a model of (game) content from a large dataset of exam-
ples, and then use this model to produce new, similar artifacts. New content is
generated by sampling the distribution of the model.

In their survey paper about PCG with machine learning, Summerville et al.
[258] specifically define procedural content generation with machine learning
(PCGML) as using machine learning to learn models of game content, based on
a dataset of existing game content. Constructive, search-based and solver-based
methods might also use machine learning internally, for example to evaluate their
outputs. However, this differs from PCGML in that these approaches do not use
models of existing game content.

Examples of machine learning methods for procedural content generation
are: neural networks, such as long short-term memory networks, autoencoders,
and deep convolutional networks; Markov models, such as n-grams and multi-
dimensional Markov chains; clustering; and matrix factorization. Recently, Liu
et al. [173] have explored deep learning methods for procedural content gener-
ation.

According to Khalifa et al. [147], one of the main reasons that PCG ap-
proaches based on search and optimization have not been applied widely in the
game industry is that they take too much time. The authors propose procedu-
ral content generation with reinforcement learning (PCGRL), which draws on
reinforcement learning for training gameplaying agents. It also builds on search-
based procedural content generation in the search space of content generators,
such as in the work of Kerssemakers et al. [146] on the intriguingly-named Pro-
cedural Procedural Level Generator Generator (PPLGG). An important difference
between other PCG approaches and PCGRL is that the latter searches the space
of game content generators (or ‘policies’) instead of the space of game content.

Search-based procedural content generation requires no training time, but
needs large amounts of time for generation, i.e. searching game content space.
For PCG with reinforcement learning, it is the other way around. The latter
approach requires substantial training time to search the space of content gen-
erators, but once an optimal content generator has been found, generation is
relatively fast. This means that PCG with reinforcement learning can be a vi-
able method for online generation. Another advantage of this approach is that,
compared to supervised machine learning (e.g. PCGML), no training data is nec-
essary. We do not need a dataset with examples of valid game content, which
is one of the main challenges related to PCGML according to Summerville et al.
[258]. Finally, viewing policies as a multistep generation process is compatible
with mixed-initiative procedural content generators. However, the PCGRL ap-
proach shares one challenge with search-based procedural content generation:
both approaches require a (manually designed) method for representing and
evaluating the generated game content.

2

Procedural content generation | 25

2.3.3 Incorporating affect

In reply to the increasing demand for player modeling and personalized con-
tent in games, Yannakakis and Togelius [288] propose experience-driven proce-
dural content generation. In this approach, which builds on generate-and-test
PCG [271], the test-component of a generator uses multi-modal computational
models of user experience to evaluate generated assets. The authors define user
experience as “the synthesis of affective patterns elicited and cognitive processes
generated during gameplay”, such as skills, preferences, and emotional profile.
This was recently explored in the episode ‘Playtest’ of science fiction series Black
Mirror. In this episode, a video game playtester experiences a personalized, pro-
cedurally generated virtual reality horror game, created in real-time from his
worst fears.

Experience-driven procedural content generation builds on the affective loop
[261, 133], a concept from human-computer interaction (HCI) research, i.e. a
cycle of emotion ellicitation, affective detection and modeling, and affect-driven
system adaptation. The player’s affective state is modelled during gameplay, and
the generator uses this data to generate and evaluate additional game content.
Yannakakis and Togelius [288] describe experience-driven PCG as a form of on-
line generation; however, it is plausible that the approach can be used for offline
generation as well.

Procedural content generation that uses a feedback-loop for evaluating gener-
ated content is reminiscent of reinforcement learning, i.e. machine learning that
uses a feedback-loop to incrementally improve the performance of the underly-
ing model. Experience-driven PCG can be viewed as a form of reinforcement
learning if the generator incrementally builds a player model over time, and uses
this to generate increasingly ‘fitting’ content for a particular player. However, not
all experience-driven PCG is reinforcement learning, as the former can also be
used for sequential adaptation (instead of incremental adaptation), to monitor
the player’s affective state throughout the process of playing the game.

2.3.4 PCG with real-world data

Some authors use procedural content generation to create new game assets from
real-world data. Data games use freely available information, such as open data,
to automatically generate game content. The term ‘data games’ was coined by
Friberger and Togelius [96], who created a generator that transforms open data
to monopoly boards. Using existing data as building blocks for procedural gen-
erators has as advantage that it reduces the manual effort that is still required by
common PCG approaches.

We can find many examples of data games, both in academia and the video
game development community. Freeciv [273], an opensource game inspired by

2

26 | Chapter 2

Sid Meier’s Civilization series, uses geo-information from OpenStreetMap1 to gen-
erate in-game maps and player positions. A Rogue Dream [74] uses Google query
results to generate sprites and names for player abilities, enemies and items.
Games from the Data Adventure series, i.e. Data Adventure [20], WikiMystery
[21, 22] and DATA Agent [117] were created from semantically linked open
data from online sources such as Wikipedia, Wikimedia Commons and Open-
StreetMap.

2.4 Open problems and debates

Although procedural content generation can potentially solve various practical
problems for game developers, Short and Adams [240] describe situations where
using procedural content generation might be problematic. These situations are
fertile ground for new procedural content generation research.

2.4.1 Controlability

Procedural content generators, especially the systems with non-deterministic
components, can be hard to control for a user. If we want to understand the
capabilities of a PCG system, we first need to understand the limits of its gener-
ative space. It is important that creators and users of procedural systems have
a clear mental picture of what the generator can produce, as this can help with
guiding a procedural system towards the desired output quality.

If a generator cannot guarantee certain properties in its output, such as fair-
ness (important in competitive games) [240], difficulty level [5] or solvability
[258], this can lead to critical problems for the underlying video game. Hav-
ing a good consistency in generation quality is especially important for online
generation, where generated assets are directly included in a game.

Controlability is also important for offline generation. Researchers have been
investigating methods for improving the usability of procedural content genera-
tors, especially those with mixed-initiative and co-creation functionality. Tracery
[70] translates the input grammar on the fly to generation examples, to visualize
the impact of modifications of the grammar and provide rapid feedback to the
user. Cook et al. [76] created Danesh, a plugin for game development tool Unity
that allows procedural generators to be viewed, edited and analysed in a single
unified interface. If a user can understand the influence of generator parameters
on the generation process, it becomes easier to control the generator, and thus to
create higher quality artifacts.

Summerville et al. [258] observed that this problem is even more important
for PCG that uses black box machine learning models. How can these models
communicate their generative space to a designer, and show how the model is

1OpenStreetMap, https://www.openstreetmap.org/

2

Procedural content generation | 27

affected by a change in parameters or training data? Techniques from Expressive
Range Analysis (ERA) and Explainable AI for designers (XAID) [292, 76] can
help with communicating model’s generative space to designers.

2.4.2 Representation of game content

The generative space of a generator is highly dependent on its underlying repre-
sentation of game content. The representation is again dependent on the chosen
generative approach or algorithm, e.g. a machine learning based approach for
text generation might require a different representation than a template-based
approach. In 2011, Yannakakis and Togelius [288] mentioned that not all game
content could be generated yet. Ten years later, this is still the case. This means
that we need to design new representations for game content for which no rep-
resentations exist yet. Additionally, we need to design new representations for
game content that are compatible with novel approaches for PCG. An example
of such a dataset is the Video Game Level Corpus (VGLC) by Summerville et al.
[259], a corpus of video game levels with three types of annotations that can be
used for procedural content generation with machine learning.

Many procedural content generators work with some variation of the generate-
and-test strategy. The testing component of this approach requires an algorithm
for the automatic evaluation of partially generated artifacts. This function is de-
pendent on the definition of quality for the specific game content, which leads to
an additional set of design challenges: How do we define quality for game con-
tent? How do we model these properties? Can we measure these qualities, given
the game content representation? And finally, are the quality metrics compatible
with the generative approach?

2.4.3 Cost

Because procedural generators can not be controlled perfectly, procedural con-
tent generation is inherently risky [240]. Even though PCG has seen considerable
progress in 40 years time, and procedural techniques are used in many commer-
cial games, there are still situations in which using PCG can have a negative
impact on the game development process. Generators may not be consistent in
the quality of their outputs, which can be fatal for games that incorporate online
generation. Including flawed, harmful, offensive, copyright protected, or oth-
erwise unsuitable game content can render a game unplayable or damage the
developer’s and publisher’s reputation. For some publishers this is a reason to
discard procedural content generation as an option altogether [37, 5]. Publish-
ers try to mitigate this problem by doing more quality assurance on the generated
content, but this requires manual work of human designers, which cancels out
some of the benefits of using procedural content generation.

Even without added quality assurance, PCG can be costly; many approaches
require the manual authoring of the generator itself, plus any required training

2

28 | Chapter 2

data, models, representations, generative algorithms and evaluation algorithms.
In the case of offline generation and human-computer co-creation, human de-
signers are necessary for the generation process, e.g. to curate and polish the
resulting generator artifacts.

2.4.4 Challenges related to machine learning

In their survey about PCG with machine learning, Summerville et al. [258] give
an overview of open problems and future research areas for PCG. Some of these
apply specifically to PCG with machine learning.

As natural language generation systems increasingly build on machine learn-
ing, the following challenges also apply to text generation in general and text
generation for video games.

• finding sufficient quantities of game data;

• learning from small datasets.

• dealing with the lack of publicly available datasets and standardized bench-
marks in PCGML;

• investigating style transfer, i.e. the idea that a machine learning model can
be transfered across domains, for game content models.

2.5 PCG for textual assets

Existing procedural content generation reseach focuses mostly on decorative
game content generation and level generation. Examples of decorative content
are textures, music and 3D models. Popular topics in level generation include
generating platformer levels, dungeons for Zelda-like puzzle games, and maps
for competitive real-time strategy games. There is however a small body of work
that focuses on textual game assets such as stories, dialogues and flavor text,
and game assets that give rise to textual game content, such as quests and socio-
cultural concepts [142]. Procedural text generation often uses special authoring
tools to help the user create the desired procedural text artifacts.

We will first discuss authoring tools for procedural text generation in Section
2.5.1, and then look at specific types of procedural text generation for games. In
Section 2.5.2 we discuss stories and quests, in Section 2.5.3 we describe qualita-
tive procedural generation, and in Section 2.5.4 we discuss dialogue generation
for games.

In order to ground the generated textual assets in the game world, most gen-
erators that produce text (in the form of stories or dialogue), often also produce
other game content that structures, contextualizes or otherwise connects the tex-
tual output to the rest of the game. We will look more closely at this contextual-
ization in Section 2.6.

2

Procedural content generation | 29

Procedural generation of textual game content also uses many techniques
from natural language generation research that do not have video games as ex-
plicit envisioned application domain, e.g. creative text generation, story gen-
eration and dialogue generation. These will be discussed in more detail in the
chapter on natural language generation, in Section 3.4.

2.5.1 Authoring tools

In many cases, designing a generator takes time, effort, and specialized exper-
tise. In order to help designers build generators, and make procedural generation
more accessible, various researchers [54, 70, 223] have investigated authoring
tools, authoring aids and other systems that support designers in creating pro-
cedural content. Although the boundaries between authoring tools for NLG and
PCG may be unclear at times, we will focus on those tools that explicitly name
video games as the intended application domain.

In his 1995 paper on template-based text generation versus text generation
with ‘real NLG’, Reiter already remarked on the necessity of authoring aids for
template creation: “How should ‘templates’ used by an NLG system be authored;
can we develop a nice authoring environment which enforces any necessary con-
straints in an intuitive manner?”

Caropreso et al. [54] created an NLG Template Authoring Environment for
authoring text templates that requires no knowledge of programming or linguis-
tics of the user. The goal of the system was to make creating narrative content, for
example for games, more accessible and user-friendly. The natural language gen-
eration functionality of the system is based on SimpleNLG [103], a sentence re-
alization system that creates natural language sentences from grammatical spec-
ifications in an abstract language. Users can create templates by writing example
sentences, marking the variable parts of the sentence, and specifying links be-
tween dependent variables. The system helps the user by showing all possible
sentences given this template, which the user can then use to further improve
the template. This method for giving users feedback on the authored procedural
rules by visualizing the generative space has since then been adopted by many
other authoring tools.

Tracery [70] is an authoring tool for context-free grammars, with a focus on
rapid user feedback and usability. It is described by Compton, Kybartas, and
Mateas [70] as a ‘casual creator’ tool [71], i.e. “an interactive system that en-
courages the fast, confident, and pleasurable exploration of a possibility space,
resulting in the creation or discovery of surprising new artifacts that bring feel-
ings of pride, ownership, and creativity to the users that make them.” The focus
on usability and transparancy of the generative space has led to a wide-spread
adoption of Tracery. The library has been ported to various programming lan-
guages, and has been used to procedurally generate text for games, interactive
fiction and Twitter bots.

2

30 | Chapter 2

Figure 2.1: Tracery’s interface with a grammar (left), visualization of the expansion steps
(top-right) and the final expansion (bottom-right).

Expressionist [223] is an authoring tool intended for non-NLG practitioners,
which builds on context-free grammars, meant for in-game (at runtime, or on-
line) generation of text that depends on the current game state. It combines
text generation with context-free grammars, with free-text markup in the form
of arbitrary author-defined tags. The design of the tool builds on earlier work
on combinatorial dialogue [229] which led to a set of open design challenges
for authoring tools [226]. It was also partly inspired by authoring tool Tracery
[70], which also uses context-free grammars with some additional annotations.
However, the two systems differ in their goal: Tracery is meant for light-weight
stand-alone text generation, whereas Expressionist is meant for content gener-
ation “that satisfies targeted requests made by an external application, like a
game”. Although Tracery supports a few Tracery-specific, developer-authored
annotations, such as those for pronouns and specific noun forms, Expressionist
accepts arbitrary, author-defined tags for metadata. This metadata is accumu-
lated during production using the Expressionist grammar. Additionally, Expres-
sionist allows the user to assign probabilities to specific production rules, which
makes Expressionist a method for using probabilistic context-free-grammars. In
order to fully resolve Expressionist grammars and use the related metadata in a
game for online generation, users need to implement their own expansion en-
gine, called a Productionist.

Lessard et al. [164] evaluated Expressionist in practice by using it to generate
dialogue for a prototype game. In the resulting research paper, they argue that
we need to start looking at game dialogue authoring in a different way. At the
moment the authoring tool does not make it more easy to generate text, but
makes it easier to write or generate modular text. Grammars force us to break
up the game dialogue in modular components, which are governed by a set of
tags and the underlying generation logic. The authors argue that we need more

2

Procedural content generation | 31

‘compositional representational strategies’ for text generation, i.e. ways to break
up content in modular units which can be recombined. This is already common
practice in music generation (e.g. with samples) and level generation (e.g. with
game level tiles).

2.5.2 Stories and quests

We will discuss story generation as part of the natural language generation field
in Section 3.4. However, some researchers specifically investigate narratives for
inclusion in games. These narratives often have interactive aspects, such as in
interactive fiction (IF) and quests, or have a connection with other game content,
such as backstories for NPCs or game worlds. Interactive fiction is a text-based
narrative-driven interactive game type, the digital equivalent of gamebooks from
the 1980s, e.g. the Choose Your Own Adventure books [65]. In the context of
PCG, some authors [179, 155] use the words ‘narrative’, ‘story’ and ‘quest’ inter-
changeably. Story generation is a broad field, which is reflected in the diversity
of story generation research for video games: procedural text generators have
been used to create content ranging from fabulae (abstract stories, or sequences
of events) to complete stories, quests, linguistic variations in emergent narrative,
and narratives that give rise to complete games.

Montfort [186] has created Curveship, an system that focuses on adding nar-
rative variation to interactive fiction. Montfort remarks that IF system developers
do typically not separate the telling (realised natural language) from what is told
(the content of the story, the events, or the fabula). Separating these two com-
ponents could give developers the possibility of introducing narrative variation
by changing aspects of the telling, such as the chronological order of events and
viewpoint of narration, without changing the underlying events that make up the
narrative. Curveship implements this concept by dividing the emergent narrative
module from typical IF system in two components: a Simulator and a Narra-
tor. The underlying natural language generation is done with a three-stage NLG
pipeline (see Section 3.2), which implements content selection and ordering,
microplanning, and surface text realisation.

Interactive fiction, or interactive narratives, are a type of digital game that
bridge traditional static, non-interactive texts on one side and fully fledged video
games on the other side. SCHEHERAZADE is a interactive narrative generation sys-
tem that automatically generates an interactive fiction by learning from crowd-
sourced corpora of example stories. [166, 123] This is another example of a PCG
system that can generate entire games.

García-Ortega et al. [99] investigated NPC backstory generation for massive
open world games. The authors focus on light-weight modeling techniques, be-
cause story generation techniques such as the Belief-Desire-Intention (BDI) ap-
proach were deemed too computation-heavy. Their intended application was
generating character events for populating NPC backstories in a massive open

2

32 | Chapter 2

world game with many NPCs. The authors use a combination of evolutionary
computation, agent-based models and logic programming for story generation.

ReGEN (REwriting Graphs for Enhanced Narratives) [155] is a quest genera-
tion system that tries to solve many of the known problems with story and quest
generation systems, using a context-aware graph-rewriting framework. The sys-
tem is similar to Skyrim’s Radiant Story generation system [27] for procedural
quest generation. The authors aim to solve some of the problems of naive quest
generation: better blending of manually authored content and procedural con-
tent; solvability of generated quests; and making sure that the quests both reflect
and modify the game world in an interesting way.

The authors chose not to use emergent narrative in order to prevent that the
stories feel like disconnected narratives. They also place some importance on
generator controlability or authorial control, as a lack thereof is a known flaw
of emergent narrative systems. Additionally, ReGEN does not change the game
world to ensure that character goals can be attained, as this might interfere with
other game content, for example manually authored content.

In ReGEN, both quests and the game world are represented as relational
graphs. New quests are generated using graph-rewriting. This approach is an
alternative to search-based, goal-oriented approaches that have been applied to
story generation, which often requires heavy computation. This makes the lat-
ter approach less usable in a game development context, especially for online
generation.

Malysheva [179] described a design and an implementation of an quest gen-
erator that takes the game world state into account during generation. The gen-
erator uses quest archetypes, abstract quest templates, as basis for quests. The
archetypes are a high-level description of a quest type, where all the specifics are
abstracted away into variables. The quest archetype also stores metadata that
describes its purpose and context, which the quest generator can use to decide
which quest should be instantiated next to progress the story.

Stockdale [255] has created ClueGen, a PCG system for creating text-based
murder mysteries. The author describes in this paper why murder mysteries
are especially suitable for both procedural content generation for games and
story generation. Murder mysteries (and their closest relative in fiction, detective
novels) tend to follow a fixed structure, which lends itself well to procedural
generation: “one character has a reason to kill another, they do so, they hide
the evidence, and an investigation occurs. (...) The entire story is often set in
one location, with a small cast of characters who all have varying opinions of
each other. As well as this, the actual purpose of detective novels which is to
intrigue the reader and get them to attempt to predict the author’s intent and
determine the killer, means that there is an amount of ‘gameplay’ inherent in the
plot, making this a perfect genre to attempt this marriage of gameplay and story.”
Additionally, many story generation frameworks work with a cast of characters
with their own beliefs and desires (BDI model), which fits this genre particularly

2

Procedural content generation | 33

well, “as it will result in characters whose actions can be explained through their
motivations (thus creating solvable crimes for the player to investigate).”

ClueGen is one of the first in a line of procedurally generated (murder) mys-
tery games, which has been a popular topic of investigation in academia. Other
examples include the Data Adventure series [20, 21, 22, 117], and Mike Cook’s
recent information gathering games Nothing besides remains and Condition Un-
known [73].

2.5.3 Qualitative procedural generation

In a 2016 vision paper, Johnson [142] defines the field of qualitative procedu-
ral generation (QPG), which “seeks to generate sociological and anthropologi-
cal concepts and structures in order to develop deep, rich and believable game
worlds.” Johnson has developed a experimental Rogue-like game called Ultima
Ratio Regum (URR) [143] which explores this type of procedural generation. The
paper describes four types of qualitative procedural generation from the game:
religions and heresies, the generation of languages and styles of speech, the gen-
eration of political and ideological beliefs, and the generation of aesthetic styles
tethered to particular cultures and reproduced throughout their material cultural
artefacts. Although URR also procedurally generates the physical spaces in the
game, these are dependent on the generated qualitative game content.

Real-life themes such as politics, social life and religion are already present in
many games, but mostly in a static, non-living way instead of a realistic, varied
and interactive context. Johnson’s aim for qualitative procedural generation is
that these elements have “an effect on every part of the [game] world the player
explores, and making different locations within the in-game world highly socio-
culturally distinctive.” This type of procedural generation also leads to new forms
of gameplay, where the player is incentivized to actively explore and search for
information by deducing it from their environment. It also leads to culturally-
grounded interactions with NPCs: instead of giving ‘rote’ responses in dialoge,
NPCs can have varied conversations using language based on their cultural back-
ground. Johnson poses that qualitative procedural generation is not only useful
for video games, but also other interactive media, such as historical simulations,
museum exhibits, interactive television and interactive storytelling.

QPG is important to text generation for games because the qualitative themes
and aspects that Johnson describes (in-game culture, history, religion) are often
referenced in game lore, and consequentially in in-game texts. The qualitative
elements can be the structures that procedural content generators need to ground
their text in the game world, which we also saw in the procedural narrative
generators discussed in the previous section.

Johnson’s work on Ultima Ratio Regum inspired others to investigate proce-
dural culture as well. Something similar to Johnson’s procedurally generated
dialect is used in Kreminski’s Epitaph [151]: the game generates a language for

2

34 | Chapter 2

every alien civilisation in the game. This generated language forms the basis of
the name of planets, species, cities and prominent citizens of this civilisation,
which are integrated in the related emergent micro-narrative. Everything else in
the gameplay is static (the technology tree) or random (in-game events), so this
is a form of qualitative flavor text generation for an emergent narrative game.
In other words, generating procedural languages for NPCs can be a powerful
method for creating distinctive, varied game content, even if the rest of the game
is random or fixed.

Hall, Williams, and Headleand [126] created CELT (Character-Event Lore
Time-line), a system that procedurally generates lore for video game worlds.
Their lore takes the form of fables for a simulated religion. The authors explain
that fables are often used as tools to pass down traditions and values, and re-
ligious stories express morals of an underlying belief system. Because of this
connection between moral stories and religious values, the authors propose gen-
erating a religion first, i.e. values and gods, then generating fables, and then
linking the fables to the religion. The system uses context-free grammars to gen-
erate natural language fables, based on a context-free grammar implementation
of Christian Booker’s “Seven Basic Plots”.

This work uses an approach that is a recurring theme in procedural content
generation: starting from the end to ensure the final output is complete, solvable
or otherwise valid. First, the underlying structure is generated (in this case, the
religion itself), and then the text that should express these structures (the fables).
The game’s player on the other hand, sees the game assets in the reverse order:
the text is presented to the player, who can then use these to gather information
about the underlying lore. This way of reverse generation, i.e. starting from the
end, is reminiscent of an approach in poetry generation, where the poetry gener-
ator start with generating the final words or syllables of each line to ensure that
every line rhymes correctly. ClueGen [255] uses a similar approach to generate
solvable murder mysteries: first, NPC relationships are generated, then the mur-
der, then the motive, and then the rest of the narrative. The emergent narrative
elements are only to fill in the gaps between the start and the outcome of the
narrative.

Grinblat and Bucklew [119] describe a system for procedurally generating co-
herent biographical narratives (biographies) for fictional historical figures from
their Rogue-like game Caves of Qud [95]. The natural language text of the bi-
ographies is generated with replacement grammars, that use words from a hand-
written knowledge base. The authors evaluated their work in the context of the
game and the current user base.

Games that use similar techniques to generate cultural in-game artifacts are
Bad News [228], which also contains generated history, and Voyageur [86],
which uses grammars to describe extraterrestrial landscapes, biomes, and cul-
tures.

Johnson [142] proposed QPG as an alternative application of procedural con-

2

Procedural content generation | 35

tent generation, which has mostly focused on generating virtual ‘physical’ spaces
and objects, such as mazes, cities and buildings. Interestingly, qualitative gener-
ation can give rise to procedural physical spaces (as in the case of Ultima Ratio
Regum), and vice versa. The minecraft settlement generating challenge [230],
a PCG challenge about generating minecraft settlements for a given procedural
map, was recently expanded with a narrative component: participating gener-
ators can earn bonuspoints if they can also provide a narrative chronicle of the
procedurally generated settlements. Similarly, Kybartas, Bidarra, Meyer, et al.
[154] built a procedural population generator which was attached to a narrative
generator for evaluation. Their population generator has properties of both space
generators (terrain, maps) and culture (primary resource and resulting culture)
generators.

2.5.4 Dialogue

In the previous section, we have already seen many games that include proce-
dural dialogue. Johnson’s Ultima Ratio Regum [142] implements procedural
languages and dialects, which in turn are used for generating NPC dialogue.
ClueGen [255] and subsequent murder mystery games use NPC dialogue to al-
low the player to investigate the murder. Players can interrogate NPCs, ask them
about their whereabouts and suspicions, gather clues, and accuse one of them of
being the murderer.

DATA Agent [117] is another example of a murder mystery game generator. It
creates games in which the player takes on the role of an agent in charge of solv-
ing a fictional murder of a real-world person. By traveling to various locations, in-
terviewing non-player characters, and gathering facts about suspects, the player
can find out which suspect commited the murder. All game content is based on
real-world locations, people and topics, with data sourced from Wikipedia. DATA
Agent uses Tracery [70] to generate NPC dialogues. Since the game revolves
around gathering information by interviewing various people, NPC dialogue is
essential to the gameplay. “The game has three types of dialog: essential dialog,
fact-giving dialog and flair dialog. Essential dialog gives clues about game ob-
jects, progressing the story and making the locations containing them accessible.
Fact-giving dialog reveals information about suspects which is important when
the player is interrogating a suspect to fact-check their responses. Flair dialog
gives information about the current NPC that the player is talking to, such as
their birth date or what they are known for, and it is not essential to progress in
the game.” [117, p. 6] The information for filling the gaps (items, names, loca-
tions, occupations, nationalities, personal facts) in dialogue templates is sourced
from Wikipedia pages and their underlying relations.

Authoring tool Expressionist [223] was used to generate NPC dialogue for
multiple games of the Expressive Intelligence Studio, which is part of the Univer-
sity of California, Santa Cruz (UCSC): Snapshot, Project Perfect Citizen, Talk of the

2

36 | Chapter 2

Town and Juke Joint. Expressionist was used in Snapshot to realize comments on
in-game photoblog posts, as surface expressions of the game’s automated photo
evaluation system. In Project Perfect Citizen, an Expressionist generates SMS
conversations between procedurally generated NPCs. Production rules contain
metadata such as relationship type, suspiciousness level and NPC personality
traits. Talk of the Town [227, 225] is an AI-driven game where NPCs have their
own subjective beliefs about the game world. Expressionist is used for dialogue
generation, dialogue management, and natural language understanding. Talk of
the Town expands the functionality of Expressionist applied in Snapshot and PPC
with backtracking, preconditions, runtime variables and middle-out expansion.
Juke Joint [224], which builds on Expressionist’s expansion in Talk of the Town,
uses the tool for NPC dialogue authoring, and adds heuristic expansion to the list
of features.

Lessard et al. [164] also used Expressionist for a game development project.
In their paper, the authors discuss the generative power and usability of the tool
in the context of creating NPC dialogue for their experimental game Hammurabi.
Hammurabi is based on the resource management video game Hamurabi [91], in
which the player takes on the role of a king of Babylon, supported by a steward,
who must manage three resources (people, land, grain) to keep his people from
starving. In each game turn, the steward reports on the state of the country, and
players can choose between four actions: feeding people grain, sowing land with
grain, buying land with grain and selling land for grain. Figure 2.2 shows part
of a Hamurabi playthrough. The experimental Hammurabi expands on the game
from the 1960s: the steward is substituted for three viziers, each with their own
personality and interests, and public opinion is an extra resource that must be
managed.

Some authors do not investigate procedural NPC dialogue in general, but
focus on very specific elements of dialogue. Schlünder and Klabunde [233] de-
scribed a system for greetings generation based on a formal model of politeness.
Their computational model of greeting exchange is based on social variables such
as ‘social distance’, ‘relative authority and power’ and ‘imposition of face threat-
ening action’. The authors argue that even something as fundamental as greet-
ings generation can still be improved in video games.

2.6 Games and coherence

Naturally, game content should fit the game in which it is included. Game con-
tent should clearly belong in the game and its narrative setting. We generally
don’t expect ninjas in a Star Wars game, or laser guns in a strategy game with a
medieval setting.2 Moreover, as many games want to offer a polished experience

2Although some games explicitly play with the expectations of their audience by combining
unrelated narratives tropes in a new and surprising way.

2

Procedural content generation | 37

Figure 2.2: Playthrough of Hamurabi (1968) from the book BASIC computer games [3]

to their players, manually authored and procedurally generated content should
blend seamlessly with each other. Similarly, game assets should not feel like un-
related, isolated instances, but instead make up a coherent whole. As a result,
naively generated content might be easy to spot.

Blending procedural content is an on-going challenge for creators of PCG sys-
tems. How can we make generated content indistinguishable from manually cre-
ated content? Can we think of ways to hide it in plain sight? If the generator has
created a flawed piece of content, can we trick the player into thinking it was de-
liberate? Various authors have critized games for their lack of cohesion between
game assets. In his description of qualitative procedural generation, Johnson
[142] observed that cohesion, sense and shared internal logic are rarely found in
most game spaces. Malysheva [179] names the discrepancy between game world
and story world as the motivation for their quest generation research. Similarly,
Kybartas and Verbrugge [155] criticize game narratives where the outcomes of
quests (and related player choices) do not influence the narrative in the long run.

Of course, increasing the interconnectedness between game assets poses a
risk for games that use procedural content generation. If all game assets are
intertwined, accidentally inserting a defective generated game asset can have a
large negative impact on the playability of the game. Game developers that want
to use procedural content generation search for a balance between game asset
independence and coherence.

In academic research, we can find the following examples of procedural con-

2

38 | Chapter 2

tent generation that tries to incorporate the game context into new assets. Kybar-
tas and Verbrugge [155] incorporate the game world into their procedural gen-
erator by representing the game world as a graph, and applying graph rewriting
steps to create new narratives that reflect and modify the game world state in an
interesting way. This results in quests which can have an observable impact on
the game world. Additionally, their automatic assessment for narrative quality
of quests incorporates metrics for measuring the long-term influence of player
actions.

Another method for generating coherent game assets is first generating a nar-
rative basis which in turn influences all other game assets. This is for example
used in game space generation, such as in Dwarf Fortress [2], where the histori-
cal simulation at the start of every game makes sure that the generated world is
realistic. Similarly, Johnson [142] uses qualitative procedural generation to cre-
ate socio-cultural concepts that act as this narrative basis. Johnson [142] argues
that this will lend depth and meaning to the content that the player encounters
in the game world.

Schlünder and Klabunde [233] argue that context-related language genera-
tion should be feasible in video games, as the necessary information about con-
text is already present as game data. They experiment with a specific example,
namely context-appropriate greetings for NPCs. Their algorithm incorporates
physical and social context, such as line of sight between characters, character
behavior (are they paying attention, are they trying to hide?), the appropriate
physical distance, discourse history, and social standing. In contrast, Skyrim’s
greeting system is far more basic, as it incorporates fewer properties in greeting
generation: character gender, character distance and faction memberships.

Taking game context into account during runtime is one of the important
features of text generation tool Expressionist, according to Lessard et al. [164].
Expressionist incorporates arbitrary meta-data in its grammars, which can be
used during runtime generation. Normally, context-free grammars are stateless,
causing NPCs to seem stuck in an eternal present. In other words, if we use
context-free grammars for game dialogue generation, this can lead to isolated
sentences that do not show intertextual coherence. Lessard et al. [164] use meta-
data to simulate ‘memory’ in their vizier NPCs. Expressionist can use this meta-
data to create mini-narratives in the vizier dialogue. Viziers remember what was
said over multiple game turns, which means they can comment on their past
recommendations and previous player actions.

Another method for increasing the perceived coherence of generated assets
is actively inviting the player to search for meaning, clues and relations. This
is used in various mystery games, such as Cluegen [255], Condition Unknown
[73] and DATA Agent [117], where the search for clues is part of the gameplay.
Some games do this more implicitly. Johnson [142] describes a procedural world
which contains cultures, all of which can be distinguished by their own aesthetic.
Even without explicity telling the player that two game objects, e.g. household

2

Procedural content generation | 39

items, buildings, clothing items, and NPCs, are part of the same culture, the aes-
thetical properties should provide enough information for the player to link them
to specific cultures. “The responsibility lies with the player to connect items they
discover to other items they’ve seen before, and gradually build up a comprehen-
sive picture of the world’s generated cultures, and use this information to inform
their decisions and actions within the game world.” [142, p. 5]

Even when connecting various game assets is not demanded of the player,
players will generally see patterns or design intention in generated game as-
sets, even when there are none. Stockdale [255] also observed this behavior
during playtesting for the murder mystery game ClueGen: “A surprising finding
from playtesting was that once players were impressed with the NPCs’ abilities
to lie, they were willing to attribute unusual behaviour to this deviousness. For
instance, when one player realised that several innocent characters had unwit-
tingly moved the murder weapon as far from the scene of the crime as possible,
he assumed that they were conspiring with the murderer to hinder the investi-
gation. (...) If the AI’s capabilities are demonstrated but not overtly explained,
players are able to fill in the gaps and embellish on the plots presented them.”
[255, p. 6] This tendency is similar to the Eliza effect described by Hofstadter
[129], who noticed that humans will attribute intelligence or empathy to (text-
producing) computer systems. It is also related to the ‘charity of interpretation’
effect studied by Veale, who found that “readers will generously infer the pres-
ence of meaning in texts that are well-formed and seemingly the product of an
intelligent entity, even if this entity is not intelligent and the meaning not inten-
tional.” [276, p. 3] Veale observed that if humans see a text in a well-known
form (or container), they are disposed to attribute more meaning to the text than
it actually contains.

This effect can be exploited by designers and generators. For example, the
creators of DATA Agent [117] used the narrative of the game to explain acci-
dental inconsistencies present in the narrative. “The player takes the role of a
detective working for the Detective Agency of Time Anomalies (DATA). In the
game’s universe, criminals can go back in time and murder famous people, alter-
ing the time line and creating inconsistencies. To prevent this, DATA sends agents
to the past to catch the killer and prevent the murder. Since the very act of going
back in time messes up time lines, DATA has incomplete information about the
past, and can only tell the player who the suspects are.” [117, p. 3] This strate-
gically chosen context is communicated in a cut scene at the beginning of the
game. This small amount of backstory makes the generated game content more
believable: even if the player encounters contradictory or missing information
created by the generator, this can be plausibly explained by the game universe
sketched in the backstory.

The game developers of Caves of Qud [119] use a similar approach for gener-
ating in-game biographies of sultan NPCs. The authors achieve a sense of coher-
ence within the biographies by exploiting the human tendency for ‘apophenia’,

2

40 | Chapter 2

i.e. human players tend to rationalize the events presented to them, especially if
the game only presents partial information. Instead of creating fictional histori-
cal accounts using a simulation or logical reasoning, the historical accounts are
created in reverse order: first the event is generated, and then the reasoning be-
hind it. The developers increase the perceived coherence of the biographies even
further by assigning every NPC an underlying theme or domain, which deter-
mines the details of the biography events. For example, a sultan with the domain
‘ice’ gets assigned biography events that incorporate the color lightblue, snow,
crystals, etc.

In this section, we explored the relation between procedural text for games
and coherence. We looked at research papers and existing games, and discussed
how these create a sense of coherence in generated game assets. In the discussed
examples, we can find the following two design goals for procedural content
generators:

1. Game assets should cohere with the game and with each other; to achieve
this, procedural generators need to strike a balance between stand-alone
game assets and tightly interwoven game assets. The former is more robust
but might be boring, the latter is more interesting and engaging, but might
break the game if part of the generation goes wrong.

2. Game assets should cohere with player actions. Ideally, player choices and
actions change the game world in a meaningful and interesting way. How-
ever, changing the game world will also influence procedurally generated
assets, which might not be robust enough to deal with arbitrary changes to
the game world.

From both research literature and existing video games that use procedural
text generation, we can distill the following two radically different approaches
for incorporating coherence in procedural text:

1. We can increase coherence by grounding procedural assets in the game
world, by incorporating information about the game world and game state
during generation, and working around manually authored content;

2. Or we can focus on increasing the perceived coherence of generated game
assets by capitalizing on player expectations, and actively encouraging play-
ers to search for patterns in and connections between game assets – even
when there are none.

2.7 Conclusion

Procedural content generation is the research field that investigates how we can
create large volumes of game content through algorithms. When we generate

2

Procedural content generation | 41

textual assets, such as character dialogue or game narratives, we can draw on
both general-purpose, content-agnostic PCG approaches and natural language
generation techniques. When using PCG techniques in a video game, we need
to ensure that generated assets are not easily distinguishable from manually cre-
ated content, and that they do not feel like isolated, meaningless game assets.
Therefore, procedural content generators should incorporate some form of co-
herence with the underlying game. We can increase the perceived coherence of
generated assets either by grounding them in the game world, or by evoking the
feeling of coherence by exploiting the human tendency to see patterns in unre-
lated data. Evoking a sense of coherence will play an important role in later
chapters, especially Chapter 4 and Chapter 5.

2

42 | Chapter 2

3
3

Natural language generation

In this chapter, we discuss the background on natural language generation that is
relevant to the work in this thesis. The chapter starts with a high-level overview
of natural language generation. We list applications, definitions of key concepts
and the most important high-level approaches. We then describe NLG methods
that are particularly relevant to procedural text generation for video games. First,
we discuss templates and formal grammars, two simple methods that are often
used in procedural text generation. We then discuss a new development in NLG:
the Transformer architecture, and focus on GPT-2, a specific type of language
model that is built on this architecture. Section 3.4 describes story generation,
a subfield of NLG that is particularly relevant to PCG for narrative video games.
Finally, we discuss evaluation of NLG systems in Section 3.5.

The reader should note that natural language generation is not the focal point
of this dissertation, but a tool that we can use to obtain our goal of generating
coherent game texts. Instead of focusing on the underlying theory of natural
language generation, we investigate NLG techniques to find out whether and
how they can be used for game development. For a more in-depth overview of
natural language generation research, we refer the reader to the recent survey
by Gatt and Krahmer [101].

3.1 Definition and applications

Natural language generation (NLG) is the task of generating text or speech from
non-linguistic input [101]. NLG is part of natural language processing, a multi-
disciplinary research area that combines linguistics, computer science and artifi-
cial intelligence.

Natural language generation systems have been designed and implemented
across many tasks and domains. As an example, take the following non-exhaustive
list of applications of NLG systems:

3

44 | Chapter 3

• report generation, such as weather reports [114, 112], soccer reports [265,
160], financial reports [152, 195] and medical reports [137, 111]

• expert systems and decision-making support systems, for example for medicine
[102, 234, 132] or finance [47]

• automated journalism or robot journalism [171, 163]

• dialogue generation [57, 217, 167, 136], for example for conversational
agents and characters in digital games

• generation of creative text, such as stories [109, 153], poetry and lyrics
[198], and procedural narrative for games [241]

• tailoring texts to a specific audience [160] and generating persuasive texts
[214, 52, 46]

3.2 Approaches

Although there is consensus that an NLG system should produce natural language
text, the inputs of NLG system vary greatly.

Text-to-text generation is generating text using natural language text as input.
Examples of text-to-text generation are machine translation (e.g. English text
is transformed to Dutch text), summarization (i.e. a long text is transformed
to a shorter text), text simplification, spelling and grammar correction, question
generation (given a text, generate a set of questions about that text) and question
answering (given a text and a question about that text, formulate an answer to
the question).

Data-to-text generation, on the other hand, is generating text using data (or
rather, data that is not exclusively text) as input. Examples of data that can
be used as input for data-to-text systems are numerical data, time-series data,
semantic representations, graphs, sensordata, images, video and sound. Gatt
and Krahmer [101] note that the lines between text-to-text and data-to-text are
slowly blurring, as most modern approaches to text-to-text generation might also
incorporate additional non-linguistic data, and vice versa. Indeed, we will see in
this thesis, which mostly builds on text-to-text generation, that additional data
sources are often used in practice. The previous chapter showed that text gener-
ation for games can be vastly improved by drawing on runtime information from
the game world and game state, which is often non-linguistic in nature.

Gatt and Krahmer [101, p. 83] classify NLG systems in two orthogonal ways,
namely based on their design and on the methods adopted in their development.
Design-wise, we can distinguish between modular, planning-based and global
(or end-to-end) approaches. Modular NLG systems divide the natural language
generation in a series of steps.

3

Natural language generation | 45

In their classic paper on data-to-text NLG [213], Reiter and Dale describe
these steps for natural language generation:

1. Content determination: what is the content, i.e. what do we want to say?

2. Text structuring: in what order should the content be presented?

3. Sentence aggregation: deciding which information to present in individual
sentences,

4. Lexicalisation: finding the right words and phrases to express information,

5. Referring expression generation: selecting the words and phrases to iden-
tify domain objects,

6. Linguistic realisation: combining all words and phrases into well-formed
sentences.

The authors divide these six steps into a three-staged pipeline architecture,
with stages for text planning, sentence planning and linguistic realisation.

However, not all modular systems use the above tasks and stages. Some
systems use a subset of these tasks, or add extra steps. For example, Reiter’s data-
to-text architecture [211] adds signal analysis and data interpretation steps. This
design choice is dependent on many variables, including the intended application
and users of the NLG systems, the inputs of the NLG system, the intermediate
representation used for each task and stage, and the knowledge required for
developing each module. If a modular NLG system uses the above steps or a
variation thereof, it is commonly refered to as a (classic) NLG pipeline.

Planning-based approaches draw from research in logical reasoning and auto-
mated planning. These approaches view the task of natural language generation
as a planning problem, where multiple computational actions should lead to suc-
cesfully achieving a communicative goal. Koller and Petrick [150] note that these
approaches have not been as popular as the classic pipeline and end-to-end ap-
proaches. However, planning-based approaches have been used for applications
such as story generation (e.g. [216]) and dialogue generation (e.g. [203]).

Global, integrated, unified, or end-to-end approaches, do not split the gen-
eration task into multiple subtasks, but instead transform the input data to the
output in one unified go. These approaches typically rely on data-driven, statis-
tical methods.

In terms of NLG methods, we can broadly distinguish rule-based, statistical,
machine learning and deep learning approaches to natural language generation.

Examples of rule-based approaches are templates and grammars. Template-
based NLG is generating natural language text by filling gaps in a pre-written
template. This method can be used stand-alone, as a simple, direct way of lin-
guistic realisation [212], or as one step in a larger, more complicated NLG system
[81]. Puzikov and Gurevych [206] developed both a neural and template-based

3

46 | Chapter 3

NLG system for the E2E NLG challenge in 2018. The E2E NLG Challenge is a
shared task, in which participants build NLG systems that can generate restaurant
descriptions from lists of restaurant properties. Puzikov and Gurevych compared
the performance of the two systems, and found that in some cases “the costs of
developing complex data-driven models are not justified and one is better off
approaching the problem with simpler techniques.” [206, p. 467]

Formal grammars, e.g. context-free grammars, can be used for defining re-
cursive templates. Grammars are very powerful. They can be used to express
a wide range of rules, and there are many types of formal grammars, which
means a grammar type can be chosen depending on the application. For ex-
ample, rules of context-free grammars can be expanded with probabilities or
data types, or with user-defined annotations such as in authoring tool Expres-
sionist [223]. Grammars and their generative space can also be relatively easy
understood by non-experts, which makes them accessible tools for creating nat-
ural language generation systems. Formal grammars (or similar combinatorial
rewriting systems) are already frequently used in game development, for pro-
cedural generation of both textual (e.g. Tracery [70], Expressionist [223]) and
non-textual game assets. Originally, the templates, grammars and rules used by
rule-based NLG system were written by hand. This is labor intensive, and for
large rulesets, hard to analyze and maintain. However, with the increased inter-
est in data-driven methods, researchers have started to investigate how we can
automatically learn rules for NLG from corpora, thus combining statistical and
rule-based methods for NLG.

Statistical methods, including those that use machine learning or deep learn-
ing, typically rely on datasets of example text, or corpora. In some cases, methods
need corpora of aligned texts, i.e. pairs of corresponding inputs (data) and out-
puts (text), to learn the desired generative space.

NLG with machine learning and deep learning typically use sequence-to-
sequence (seq2seq) models and recurrent neural networks (RNNs) [90]. The
encoder-decoder architecture is a prevalent architecture in neural NLG. In this
architecture, an encoder neural network translates an input sequence to a vector
of a fixed length. A decoder neural network subsequently decodes the resulting
vector into an output sequence. The problem with this architecture is that every
input has to be translated to a fixed length vector, which might lead to problems
for inputs that are long, or longer than the sequences in the training set [63].
Bahdanau, Cho, and Bengio [14] addressed this problem by adding attention
mechanisms, an extension to the encoder-decoder architecture that lets the neu-
ral network direct its attention to specific parts of the input sequence. Instead of
encoding the entire input sequence into a single vector of fixed length, the neural
network encodes the input sequence into a sequence of vectors. During decod-
ing, the system dynamically chooses a subset of these vectors. In other words,
the decoder focuses only on those parts of the input sequence that are relevant
for the current output. More recently, Transformers [275], a type of neural lan-

3

Natural language generation | 47

guage model, have gained in popularity. Transformers perform well in a variety
of natural language processing tasks, and are now increasingly used for creative
language generation.

Whether statistical methods can be used depends on the availability of cor-
pora for a given domain or task. There are many instances in which there is no
example data available for a particular application domain, task, or language. A
lack of available corpora can pose a challenge to the development of NLG for spe-
cific application domains or tasks, as example data is necessary for extrapolating
rules and training machine learning models.

Researchers have been trying to mitigate these challenges in various ways, for
example by aligning existing datasets automatically, creating new datasets using
crowd-sourcing techniques, investigating methods that require fewer datapoints
to begin with, and investigating statistical methods that do not require aligned
data.

3.3 Popular NLG methods for PCG

Rule-based techniques for procedural generation are already commonly used
in game development practice, probably because those are more accessible to
people without a background in computer science than more complicated tech-
niques. Consequentially, the work in this thesis mainly draws on rule-based
techniques, especially templates and grammars. In addition to rule-based meth-
ods, we will explore Transformers, a recent architecture for sequence processing
based on deep learning that performs particularly well in creative applications.

3.3.1 Templates

Template-based NLG is generating natural language text by filling gaps in a pre-
written template. It is one of the simplest methods for text generation. Figure
3.1 shows an example of an email template. When combined with a database of
customer information of a webshop, this template could be used to automatically
create a large volume of emails.

3.3.2 Formal grammars

Formal grammars can be used for text-generation. In fact, formal grammars can
be used for defining recursive NLG templates. Context-free grammars are the
type of grammars that are most used for text generation. They were originally
defined by Chomsky [64] in the 1950s, but similar mathematical formalisms
were used long before that.

Context-free grammars are formal grammars consisting of an alphabet V of
non-terminal symbols, a finite set of terminal strings Σ, a start symbol S ∈ V ,
and a finite set of production rules R ∈ V × (V ∪ Σ) that specify how grammar

3

48 | Chapter 3

Dear FIRST_NAME LAST_NAME,

Thank you for buying our product PRODUCT in WEBSHOP.
Could we interest you in SECOND_PRODUCT?
We can offer you a code for a discount of DISCOUNT_PERCENTAGE:

CLIENT_DISCOUNT_CODE

Kind regards,

COMPANY_NAME
COMPANY_ADDRESS

Figure 3.1: Example of a text-generation template for a marketing email. The variable
names (in all-caps) represent gaps that can be filled in based on spreadsheet
data to create a set of emails.

V ={D,G,N}
Σ ={“Hello”, “Nice to see you”, “I’ve heard all about you”,

“hero”, “high one”, “champion”}
R ={D → GN,

G → “Hello”|“Nice to see you”|“I’ve heard all about you”,

N → “hero”|“high one”|“champion”}
S =D

Figure 3.2: Context-free grammar for generating NPC greetings in a fictional game. The
pipe symbol | in production rules denotes a choice.

symbols can be rewritten. Grammars are an application-neutral formalism. If we
want to use them for natural language generation, the terminals of the grammar
consist of natural language phrases. Figure 3.2 shows a context-free grammar
that could be used for generating non-player character (NPC) dialogue lines in a
video game.

This grammar can generate dialogue lines such as “I’ve heard all about you,
hero.” and “Nice to see you, champion.” by rewriting starting symbol D using
the production rules, until no non-terminals are left.

Context-free grammars are only one specific type of grammars, and many
other types of grammar (typed grammars, context-sensitive grammars, L-systems)
exist. Grammars have considerable expressive power, which means they can be

3

Natural language generation | 49

adapted according to varies tasks and domains. For example, Markov chains,
simple statistical language models, can be fully expressed as formal grammar.
As an added bonus, context-free grammars are relatively easy to understand for
non-experts, which makes them an accessible tool for creating natural language
generation systems. Formal grammars or similar combinatorial rewriting systems
are commonly used in game development, for procedural generation of both tex-
tual and non-textual game assets.

3.3.3 Transformers

The Transformer [275] is a neural architecture for sequence transformation and
sequence modeling. As natural language text is sequential, i.e. a sequence of
letters, words and sentences, Transformers are suitable for natural language pro-
cessing tasks. The design follows the encoder-decoder architecture for machine
learning. Researchers noticed that the performance of these models could be fur-
ther improved by adding attention mechanisms. In contrast to typical encoder-
decoder models, which use recurrent or convolutional neural networks as build-
ing blocks, Transformers are based solely on attention mechanisms. This has
two advantages. Attention mechanisms are better at modeling dependencies be-
tween inputs and outputs that are far away from each other in the sequence.
Unlike recurrent neural networks, attention mechanisms do not have to perform
their computations sequentially. As a result, attention mechanisms can be used
with parallelization, which allows for faster computation.

Vaswani et al. [275] evaluated the new architecture on English-to-German
and English-to-French machine translation. The results were automatically scored
with BLEU [202], a similarity metric for scoring machine translation. The authors
found that their Transformer model outperformed the best previously reported
models (including ensembles) for English-to-German. The model also outper-
formed all of the previously published single models for English-to-French trans-
lation, at less than 25% of the training cost of the previous state-of-the-art model.
To measure the performance of the different components of the Transformer ar-
chitecture, the authors varied their base model in different ways. Among other
things, they found that bigger models perform better than smaller models.

After the publication of the Transformer architecture, various research groups
started building upon this idea and training their own language models. Google
Research created BERT [85], which in turn inspired various other language mod-
els and architectures, such as RoBERTa [174] and DistilBERT [231]. OpenAI
created GPT [208], GPT-2 [209] and GPT-3 [49].

The original models model the English language only, as their training cor-
pora consisted mainly of English language text. However, the models are not
necessarily limited to applications in English. Transformer models can be fine-
tuned on additional training data, including training data in other languages.
GPT-2 is known to reproduce or generate programming code and XML, including

3

50 | Chapter 3

correct syntax and balanced tags. New BERT models have been trained for both
single languages, including languages other than English [278], and multiple
languages [221].

3.3.4 GPT-2

GPT-2 [209] is a set of pre-trained language models by OpenAI. The largest lan-
guage model has 1.5 billion parameters.1 Its predecessor is GPT [208], a pre-
trained model built on the Transformer architecture. Vaswani et al. [275] ob-
served that increasing the size of their Transformer model leads to an increase
in performance, so OpenAI trained a series of language models with increasing
size, both in terms of training set size and parameters.

The developers of GPT-2 trained the model to predict the next word in a sen-
tence in an unsupervised way on a large corpus of scraped web text. Even though
GPT-2 has not been finetuned on datasets for specific tasks, the model performs
well on a variety of NLP tasks. This is because many NLP tasks can be encoded
as natural language sequences: tuples of the input, output and task. “For exam-
ple, a translation training example can be written as the sequence (translate to
french, english text, french text). Likewise, a reading comprehension training
example can be written as (answer the question, document, question, answer).”
[209, p. 2] The creators of GPT-2 hypothesized that a model for predicting the
next word in a sentence (sequence) should be able to infer tasks and then per-
form them if they are demonstrated in natural language sequences, as long as the
model has sufficient capacity, and the training data is large and diverse enough.

In terms of capacity, GPT-2 is already much larger than the first OpenAI model
GPT. GPT-2 has been released in four sizes, ranging from 124 million parameters
to 1.5 billion parameters. All sizes pre-trained models are freely available. The
release of the biggest GPT-2 model was at first postponed for fear of abuse. The
pre-trained models can be finetuned with smaller datasets for specific language
processing or language generation tasks.

GPT-2 has an even larger successor, GPT-3, with a similar architecture but
even bigger model capacity. However, GPT-3 is, as of April 2021, still in ‘private
beta’, which means only a select group of users can use the model. GPT-3 is only
available via a commercial API, so the language model cannot be inspected fully.
The creators of GPT-3 have written an open access paper about GPT-3 [49] and
shared some sample data, but the full-size models and their underlying training
data are not available.

3.3.4.1 Training corpus

The training corpus of GPT-2 is called WebText. This corpus consists of 40 GB
of text data, or approximately 8 million webpages, scraped from the internet. In

1https://github.com/openai/gpt-2/blob/master/model_card.md

3

Natural language generation | 51

order to obtain high quality text data, the researchers only scraped webpages that
could be reached via a Reddit post that received at least three karma from Reddit
users. Reddit is a social media platform where users can share links or text.
Other users can vote for the best submissions using a point-system called karma,
which is essentially a crowd-sourced quality ranking of posts and comments.
This led to a higher data quality than can be found in similar webcorpora, such
as CommonCrawl.

Unfortunately, WebText is not publicly available. The open-source community
is trying to create an opensource version of WebText, such as the OpenWebText
Corpus by Brown University researchers 2 and a similar-named3 project by Joshua
Peterson. Other researchers are trying to build similar datasets, but for other
languages. Various initiatives exist to create other large, high-quality corpora,
such as OSCAR [201], a massive multilingual corpus based on a cleaned and
shuffled version of CommonCrawl4, However, even if datasets of WebText’s size
are available, the sheer size of the language model makes training a challenge
for common computer systems.

3.3.4.2 Usability

GPT-2 is relatively easy to use, even for non-experts. The model has been in-
tegrated in various open source projects, such as HuggingFace’s Transformers5

library, and it is easy to find blogposts, tutorials, code examples and interactive
demonstrations online. Some developers, such as Max Woolf, have written exten-
sions or wrappers for GPT-2 that make it easier to use, either locally6 or deployed
in a cloud environment7. The resulting accessibility of GPT-2 has contributed to
a wide-spread adoption for creative language generation projects, such as games
and Twitter bots.

3.3.4.3 Challenges

Despite their enthousiastic adoption and wide-spread media-attention, GPT-2,
and similar large language models, have various problems and limitations that
still need to be addressed. Some of the problems are inherent in large language
models, and some are specific to GPT-2. Some problems can have significant soci-
etal impact, especially when the prevalence of large language models increases.
Besides their many beneficial applications, large language models can be used
for various malicious purposes, such as fake news [290, 24], online abuse, and
building spambots [244, 98].

2https://skylion007.github.io/OpenWebTextCorpus/
3https://github.com/jcpeterson/openwebtext
4Common Crawl, https://commoncrawl.org/
5Transformers by HuggingFace, https://huggingface.co/transformers/
6gpt-2-simple by Max Woolf, https://github.com/minimaxir/gpt-2-simple
7gpt-2-cloud-run by Max Woolf, https://github.com/minimaxir/gpt-2-cloud-run

3

52 | Chapter 3

Large language models like GPT-2 can reflect various biases, such as biases
pertaining to race, gender, sexual orientation [238, 244] and given names [242].
Researchers found that specific prompts can trigger GPT-2 in generating racist or
offensive text [106, 281]. The biases that we can find in GPT-2, which was
trained on web text, are reflective of the biases we can find in English online
text. Consequently, some researchers are now arguing for stricter selecting and
curating of training data for large scale language models, to reduce the latent
bias in these models, e.g. [25].

GPT-2 has problems generating factual text. An evaluation of arguments gen-
erated by GPT-2 showed that it tends to generate a mix of opinion and facts
[118]. In neural text generation, neural networks sometimes predict outputs that
are factually incorrect given the input [220, 62]. An example of this can be found
in image caption generation, when neural networks generate captions about ob-
jects that cannot be found in the image. This effect is called hallucination [220].
GPT-2 and derivative language models are also susceptible to generating factu-
ally incorrect text. The ficticious newspaper article about the discovery of Ovid
Unicorns, which was included in the original GPT-2 paper [209, p. 20], is a good
example of this, although we should keep in mind that the paragraphs of the
newspaper article were cherrypicked from multiple generation rounds.

GPT-2 might generate text that loses its coherence over time. Sometimes
the generator seems to lose track of the textual structure, or the topic under
discussion. Holtzman et al. [130] observed that some sampling methods for GPT-
2 may lead to text degeneration, e.g. generating text that is bland, incoherent or
repetitive. The authors propose nucleus sampling to overcome the degeneration
problem. Radford et al. [209] already observed that the smallest GPT-2 model
tends to converge on repetition.

Finally, GPT-2 has a language bias. GPT-2 is strongly biased towards English,
which stems from the English language training data that was used to create
the pre-trained model. To mitigate the strong bias towards English language
text, researchers have investigated wheter GPT-2 can be tuned towards other
language, such as Dutch and Italian [279]. Interestingly, OpenAI observed that
the language bias was less prominent in the largest GPT-2 model with 1.15 billion
parameters [244].

3.4 Story generation

Although most NLG research focuses on producing non-fiction text, there are
various applications for NLG in the creative text domain. We will focus on story
generation, as this is the most relevant topic in the context of text generation for
narrative video games.

We can also find other text generation techniques that are useful for PCG
for video games, for example in research for generating poetry, lyrics, jokes,
advertising slogans, catchy titles, curiosity-inducing news headlines, and movie

3

Natural language generation | 53

scripts. Research related to these topics will not be discussed here, but in the
background sections of relevant chapters.

3.4.1 Definition and key concepts

A problem with story generation is that it is not easy to formally define the prob-
lem that story generator systems should solve. In his 2012 survey of Story Gen-
eration Algorithms (SGAs), Gervás [109] observes that for story generation sys-
tems, it is not clear what the input should be, nor what the characterists of the
output should be. This makes it hard to evaluate the performance of a single
system, and compare multiple systems.

Gervás focuses on computational procedures resulting in an artifact that can
be considered a story. The definition of story that Gervás uses is purely func-
tional, not aesthetic. For Gervás, the quality of the surface realisation, i.e whether
the story consists of “readable and appealing text” is of lesser importance. The
survey mentions systems that at least produce a fabula, or a sequence of events
that is an abstract representation of a story.

In their 2017 survey on story generation techniques, Kybartas and Bidarra
[153] use a formal model of narrative based on structuralist narrative theory.
The authors use this framework to identify which elements of a story are most
commonly generated.

The authors provide the following definitions of core concepts in computa-
tional narrative research, based on earlier computational narrative surveys and
structuralist narrative theory.

1. Narrative is defined as having a story, the main content, and a discourse,
which is the particular telling of a story.

2. Story is the main content of the narrative; this includes what happens in
the narrative, the plot, and the space in which the narrative occurs.

3. Plot is a set of events with an overall structure which represents both the
temporal ordering, and the causal relations between the events. Events
typically consist of one or more low-level actions, instigated by and/or af-
fecting a number of entities in the space.

4. Space includes existents, or the characters, settings, props, and anything
which is present either physically or abstractly in the space of the narrative.
Because existents change and evolve over time, the space also consists of an
initial state which contains the set of all existent states as they exist before
the start of the plot. Space is also called world or game world, depending
on the context of the research.

5. Discourse is the particular telling of a story. This may include the style of
the space, the ordering and duration of the events in the plot, etc.

3

54 | Chapter 3

Similarly to the survey by , the authors focus mainly on story generation (the
events being told) instead of discourse generation (the telling).

The definitions employed in the surveys by Gervás and Kybartas and Bidarra
are very similar. However, we can find large differences in the definition of ‘story’
and the task of story generation in existing research. Mostafazadeh et al. [191]
define a story or narrative as “anything which is told in the form of a causally
(logically) linked set of events involving some shared characters.” In contrast, the
definition of story by Kybartas and Bidarra [153] does not mention characters.
Yao et al. [289] include both fabula generation and surface text realisation in
their definition of story generation.

The survey by Gervás [109] describes systems that produce static stories.
However, there also exist interactive storytelling applications, which allow a user
to influence the events in the story. As examples, Gervás mentions interactive
fiction (IF) and 3D simulated worlds similar to video games. There are also sys-
tems that focus on creating the surface realisation of stories from a fabula, such
as STORYBOOK [51], the Narrator [266] and Curveship [186], and those that
focus on various aspects of the telling of stories, for example stylistic variation
[187], affective language [256] and personality [177, 280].

3.4.2 Story generation systems

Gervás describes the first storytelling system on record, the Novel Writer system
by Klein et al. (1973), which is a system that generates murder mysteries. We
saw something similar in the procedural content generation field, i.e. see Section
2.5.2, where murder mystery games are a common genre for generative systems.
Novel Writer takes a description of the story world and the story characters as in-
put. Stories are generated using two different sets of rules: one set determining
the possible changes to the story world, and one set defining a logical sequence
of events. This type of rule-based story generation is still used in practice. One
of the drawbacks of this method is that the ruleset severly limits the type of story
that can be generated, so this type of story generators is typically not generaliz-
able across genres.

TALESPIN [185] is a story generator that can create stories about woodland
creatures. In contrast to the Novel Writer system, it is planning-based. Characters
in the story world have goals, and the story generator uses character goals to
drive the actions in the story. Talespin introduced the idea that a story can use
multiple characters with different (and sometimes conflicting) goals. Talespin
also models character personality traits and relations between characters, which
in turn influence character actions in the story.

AUTHOR [82] is a story generator that experimented with modelling author
goals (or meta-goals) instead of character goals. The rationale behind this is
that story events are determined by author goals, such as creating a coherent or
believable story, or grabbing the reader’s attention.

3

Natural language generation | 55

Lebowitz [158] created UNIVERSE, a story generation system for soap opera
scripts. The system focuses on creating never-ending stories for a large cast of
characters with interweaving stories. This is different from earlier story genera-
tors, which focus on stories with a beginning and an end. Lebowitz also addresses
the question whether the story world should be created first and the plot second,
or whether the story world should be generated on the fly in service of the plot,
for example by adding characters, items and locations as needed.

This is reminiscent of a similar debate in procedural content generation. In
procedural generation, which approach can be chosen depends on many factors,
including what other game assets are used. For example, if a story generator
is used in conjunction with human-created game content, the generator should
work on top of the manual content, and change the game world in only a minimal
way to prevent breaking the game. On the other hand, the generator should
create meaningful new content, which might require changing existing assets.
Kybartas and Verbrugge [155] discuss this trade-off well in their work on quest
generator ReGen.

In his story generation survey, Gervás also discusses the various algorithm
types of the mentioned story generation systems. Existing story generators com-
bine one or multiple of these types. In planning based approaches, the generator
takes a formal description of an initial world state, and a desired goal, and pro-
duces a sequence of actions that will lead to the realisation of that goal in the
story world. Planning based approaches can work on different levels of goals,
such as author goals and character goals. TALESPIN also combined two “direc-
tions” of planning, which Gervás calls forward-chaining, i.e. first events and then
their outcomes, and backward-chaning, i.e. first goals and then events that will
lead to the outcome of the goal. Planning approaches can also reason about mul-
tiple aspects of the story at the same time, as demonstrated by FABULIST [215]
which simultaneously reasons about causality, character intentionality and moti-
vation. Another approach is using “a set of resources that abstract key elements
of story structure”, such as story grammars and templates. Finally, Gervás men-
tions systems that “mine a set of previous stories to obtain material they can reuse
in building new ones”, i.e. statistical approaches and data-driven approaches.

Kybartas and Bidarra [153] categorise and discuss relevant research based
on two elements of stories, i.e. plot and space, and the degree of automation
of those elements. They place relevant research in the abstract space of com-
putational narrative authoring, of which the two axes are plot automation and
space automation. The authors divide the space in four quadrants: manual story
authoring, space generation (partially automated space but manual plot author-
ing), plot generation (vice versa), and story generation. True story generation,
for Kybartas and Bidarra, are instances of mixed-initiative story creation where
both the plot and space creation are done at least partially automatic. The au-
thors discuss the entire range in story creation tools: from authoring tools for
both manual plot and space creation, such as tools for writing hypertext, educa-

3

56 | Chapter 3

tion and therapy, to full story generation systems where both plot and space are
fully automated.

Kybartas and Bidarra [153] identified five degrees of plot automation: man-
ual, where the story creation is mostly done by a human author; structure, where
the computer provides a structure to fill in but does not contribute to the content;
template, where the computer creates a sequence of ordered events, constrained,
where the computer generates a full plot according to a human-defined specifi-
cation; and automated, where author involvement is minimized.

Similarly, they identify five degrees of space automation: manual; modifica-
tion, where the computer modified parts of a human-written space; simulation,
where the computer generates new content for a space using simulated interac-
tions between existing content of that space; constrained, similar to constrained
plot automation, and automated, where the human author contributes as little as
possible.

3.5 Evaluation

Currently, one of the biggest open problems in NLG is how we can evaluate NLG
systems. In NLG, evaluation methods vary greatly from research to research,
which makes it hard to compare multiple systems, and thus draw conclusions
about the efficacy of different approaches. This large variation in evaluation
methods is partially caused by the lack of definition of an NLG system, and the
resulting variety in their inputs, outputs and applications.

Spärck Jones and Galliers [245] describe various ways of approaching eval-
uation of NLP systems. Since NLG systems are a subset of NLP systems, their
description applies to NLG systems as well. They distinguish two types of evalu-
ation criteria: intrinsic and extrinsic criteria. Intrinsic criteria are properties that
pertain to the task that the NLP system should solve, whereas extrinsic criteria
are about the larger goal of the environment in which an NLP system is used.
In other words, intrinsic properties are about the ‘what’ (the task) and extrinsic
properties more about the ‘why’ (the reason we want to solve the task). Spärck
Jones and Galliers [245] note that there is a difference between evaluation of
the NLP system itself, and the larger environment in which the system is used,
called the setup. Both the NLP system and the setup as a whole can be evaluated
intrinsically and extrinsically.

Gatt and Krahmer [101] expand on the categorization by Spärck Jones and
Galliers, and describe the dominant methods for both intrinsic and extrinsic eval-
uations of NLG systems [101, p. 123–130]. In intrinsic evaluations of NLG sys-
tems, outputs are rated on a set of properties. The ratings are either given by
human judges or computed using statistical metrics and reference corpora of
example texts. Intrinsic studies often measure a proxy of the intended effect
of a system, instead of the effect itself. Intrinsic evaluations involving human
judgements are normally done in an artificial context, i.e. a laboratory setting.

3

Natural language generation | 57

However, we can also ask users to interact with the NLG system in a real-world
context, and afterwards ask them to rate the system on a set of properties, to
lend more ecological validity to the intrinsic evaluation.

In extrinsic evaluations of NLG systems, we measure effectiveness in achiev-
ing a desired goal. The definition of effectiveness is dependent on the application
domain and the task that the NLG system should solve. In the context of NLG,
extrinsic evaluations assess a system’s effect by measuring its effect on a user’s
performance of a task in a real-world setting. Extrinsic studies are relatively
costly in terms of time and expense. They also require a large enough group of
suitable research participants to evaluate the system in a real-world context in a
statistically significant way. For example, for an extrinsic evaluating of an NLG
system that produces game text, we would need a large enough group of players
or game developers that want to use the system in practice.

Evaluation is often a balancing act that depends on the goals of the research
project and the weight given to proper evaluation by the researcher and the re-
viewers. It also depends on the properties of the NLG system under evaluation
and their complexity. If we want to evaluate the grammaticality of textual out-
puts, an automated metric or a survey could suffice. On the other hand, if we
want to evaluate more abstract or harder to operationalize properties such as
groundedness or usefulness, we might need a more extensive and ecologically
valid evaluation. If we want to evaluate the effect of the text generator as a
whole, evaluating it in a real-world context might be more appropriate.

Gatt and Krahmer [101] point out that according to recent studies, the dif-
ferent evaluation methods often do not converge on verdicts. This is the case for
ratings of both single NLG systems and performance rankings between multiple
systems. In fact, meta-evaluation literature might contradict each other. For a
recent overview of the debate surrounding NLG evaluation, we refer the reader
to Gatt and Krahmer [101, p. 121].

Spärck Jones and Galliers [245] also distinguish between black box and glass
box evaluation. Black box evaluation only considers system input-output rela-
tions, whereas glass box evaluation also considers the mechanisms linking input
and input, i.e. the underlying processing steps [245, p. 26]. In a glass box
evaluation, the contribution of the separate components or parameters are eval-
uated. For this we need an evaluation setup where the contribution of each
components can be measured separately and subsequently judged uniformly, for
example by disabling one component at a time and measuring the differences in
the generated results. However, as Gatt and Krahmer [101] observe, exhaustive
component-wise comparisons are sometimes difficult to make and may result in
a combinatorial explosion of configurations. An example of the glass box evalua-
tion approach can be found in the paper describing the Transformer architecture
[275], in which the authors discuss the contribution of the attention mechanisms
and various model parameters by showing their influence on the performance on
machine translation tasks.

3

58 | Chapter 3

3.5.1 Automated metrics

Metrics-based NLG evaluations score an NLG system by comparing its outputs
to a corpus of gold-standard reference texts. The metric is a score that tells us
how similar the NLG system’s outputs are to the texts in the reference corpus.
Examples of commonly used metrics are BLEU [202], METEOR [157], ROUGE

[169] and CIDER [277]. There are also many variations on these metrics for
specific languages, application domains or tasks. Most of these metrics originate
from research fields where text similarity is an important evaluation property
for generated texts, such as machine translation and summarization. Conse-
quentially, most metrics will favor outputs that are very similar to the reference
corpus. However, if we want to measure textual properties that are not related
to document similarity, then opting for metric-based evaluation is not the right
approach.

Even though automatic metrics have a number of caveats, they continue to
be popular in NLG research. Metrics based evaluation is faster and less cost-
intensive than evaluations involving human judgements, allowing the evaluation
method to scale if the number of outputs or systems increases. This is an advan-
tage when multiple systems need to be evaluated relatively quickly, for example
in the context of a shared task. Dušek, Novikova, and Rieser [90] used metrics
to automatically evaluate 62 submissions to the E2E NLG challenge, a shared
task on end-to-end (E2E) natural language generation (NLG) in spoken dialogue
systems.

Some researchers use automated metrics as a measure of negative perfor-
mance. Wang and Cho [283] published the first paper that used language model
BERT for text generation. They used SELF-BLUE [293] to measure the diversity
of texts generated by BERT. A higher SELF-BLUE means less diversity. Geissler
et al. [107] used ROUGE-5 to detect and discard outputs that were very similar
to the original training corpus in a computational creativity project.

3.5.2 Collecting human ratings

Instead of using automatic metrics, we can ask human judges to rate outputs on
a set of properties. The advantage of this approach is that humans can evaluate
texts using experience, grounded knowledge and logical thinking, something that
automatic metrics cannot. Discrete ratings, such as 5-point or 7-point Likert-
scales, are common. We can ask judges for absolute and relative judgements. In
the first case, each output is judged independently of the others. In the second
case, judges are presented with a collection of outputs, which should be ranked
according to some property. The evaluation might be in the form of a survey. If
the evaluation takes place online, the research participants are often recruited
from crowd-source platforms such as Appen8 or Amazon Mechanical Turk.

8Crowdsourcing platform Crowdflower was renamed to Figure Eight in 2018, and acquired
by Appen in 2019.

3

Natural language generation | 59

A slightly more involved approach for collecting human judgements is embed-
ding the generated texts in the context for which they are generated, instead of
presenting them in isolation. In this approach, participants are asked to interact
with the NLG system to perform a task in (a laboratory version of) a real-world
context. Afterwards, we ask the research participants questions about the artifact
and the context. However, this approach has some additional challenges. Not all
domains are suitable for this evaluation method, as not all real-world contexts
can easily be transferred to a research setting, such as NLG for the medical do-
main.

The properties on which outputs are evaluated depend on the type of output,
and the intended application of the NLG system under evaluation. As most NLG
research focuses on informative NLG, typical evaluation properties are gram-
maticality, language quality, correctness, groundedness, fluency, usefulness and
clarity. For creative language generation, typical properties are linked to enjoy-
ment and aesthetics, such as creativity, humor, surprise, unexpectedness and the
probability that the output was written by a human instead of by a computer.

Human judgements are subjective, even more so if the properties themselves
are hard to define. Operationalizing properties like creativity and humor remains
difficult, but researchers from the same research field tend to use the same es-
tablished definition. For example, Boden’s breakdown of creativity [41, p. 1] is
commonly used in computational creativity research. According to Boden, cre-
ativity is the ability to come up with ideas or artefacts that are new, surprising and
valuable. Subsequently, the properties ‘novelty’, ‘surprise’ and ‘value’ are often
used as evaluation properties in computational creativity evaluations. One of the
challenges of evaluating with human ratings is that, even when researchers pro-
vide a clear description of the evaluation properties, research participants might
differ in their interpretations of core concepts, which can lead to large variations
in ratings between participants.

3.5.3 Measuring task-based performance in a real-world context

Finally, the most involved but more robust approach to NLG evaluation is to
put the generator in a real-world context and let research participants perform
the task for which the generator was built. Instead of asking participants their
opinion about the system, we measure the effect of the NLG system on the actual
performance of the task.

This type of evaluation is the most rigorous, but also the most complex in
terms of experimental design. Is the intended effect of the NLG system, such as
better decision making, measureable? How do we measure the intended effect
of the system? What can we use as a baseline? Interpreting the results of such
an holistic approach is also complex, as the performance is not solely determined
by the NLG system and the efficacy of the underlying techniques. Properties of
the setup that are independent of the NLG system, such as the quality of the user

60 | Chapter 3

interface, might also influence the performance of the task by the user.
In some cases, ethical considerations prevent us from doing real-world task-

based evaluations, because the mistakes in the NLG system might harm or pose
a risk to research participants. In these cases, researchers must take measures
to prevent this from happening. In some domains, such as crisis management or
medicine, this evaluation approach might not be possible at all.

3.6 Conclusion

Natural language generation is the research field that focuses on transforming
data into natural language text. As we saw in Chapter 2, existing text generators
for games use templates or formal grammars for text generation. In this chapter,
we described templates, grammars, and GPT-2, a neural language model built on
the Transformer architecture. Later chapters will feature flavor text generators
based on both templates and GPT-2. We also saw that GPT-2 can be fine-tuned on
additional data, to learn specific tasks or adopt to a specific domain. In Chapter
8, we will present multiple video game text corpora that can be used for natural
language generation in the video games domain. This chapter also provided
an overview of story generation, which shares some characteristics with quest
generation for video games. In the next chapter, we will study story generators
in the wild to gather additional inspiration for procedural text generation for
video games.

Part II

Flavor text generation

4

4
Low-cost story generation in the wild

In this chapter, we start investigating potential approaches for generating coher-
ent flavor text by looking at text generators for creating works of fiction. We
take this somewhat round-about approach as a way to find low-cost generation
methods that are usable in practice by non-experts in computational linguistics.
We analyze the code and outputs of 60 text generators built for online program-
ming challenge NaNoGenMo 2018 which can generate works of fiction of at least
50,000 words. Because these methods are typically not documented in research
literature, they might have escaped notice of the research community.

The main contributions of this chapter are:

• A qualitative analysis of the code, approach and output of 60 text genera-
tors for generating fiction

• A description of four common design patterns used in these generators:
high level structure definition, using modular building blocks, emergent
narrative and evoking coherence.

• An analysis of the suitability of these design patterns for coherent flavor
text generation for video games

This chapter is based on the following peer-reviewed publication:

• Judith van Stegeren and Mariët Theune. “Narrative Generation in the Wild:
Methods from NaNoGenMo”. In: Proceedings of the Second Workshop on
Storytelling. Florence, Italy: Association for Computational Linguistics,
Aug. 2019, pp. 65–74. URL: https://www.aclweb.org/anthology/W19
-3407

4

64 | Chapter 4

4.1 Introduction

Coherence is generally considered to be a property of a good story. For a story
to be coherent, “all the parts of the story must be structured so that the entire
sequence of events is interrelated in a meaningful way” [236, p. 960]. For gener-
ated stories, in particular those generated using neural models, coherence tends
to decrease rapidly as the output length increases. For this reason, generating
long stories is still a challenge [148].

To gain more insight in how generation of long stories is done ‘in the wild’,
we review a collection of story generation projects that were created as part of
the online challenge NaNoGenMo.

NaNoGenMo, or National Novel Generation Month, is a yearly online event1

that challenges participants to create a novel using text generation. Participants
have one month (November) to develop a text generator and use it to procedu-
rally generate the text of their novel. GitHub is used to register for the event and
share participants’ progress throughout the month. To qualify as a NaNoGenMo
winner, participants have to share their code and a generated text of at least
50,000 words.

Since NaNoGenMo takes place online, we can use it to study practical ap-
proaches to text generation and story generation. Participants do not necessarily
use state-of-the-art techniques from story generation research. Instead, the Na-
NoGenMo entries offer us a look into practical novel generation methods used in
a (mostly) non-academic context. NaNoGenMo provides an accessible repository
of story generation projects (including both code and output) that is incompara-
ble to any academic generation challenge in terms of diversity and scale. What
makes NaNoGenMo extra interesting is that it focuses on the generation of texts
with a much longer length than addressed in most scientific research.

We analysed the work of participants in NaNoGenMo 2018, as this was the
most recent edition of NaNoGenMo at the time of writing. We start with cat-
egorising the projects by their output type, focusing on projects that generate
text with a novel-like structure. We then list the main methods for text genera-
tion used by participants in Section 4.4, since text generation methods influence
the coherence of the output text. In Section 4.5, we discuss projects that gen-
erate text with a coherent narrative structure. We list the different approaches
that were used to achieve this narrative structure, and link them to scientific
literature. Finally, we provide some recommendations on when to use which
approach.

1https://www.github.com/nanogenmo

4

Low-cost story generation in the wild | 65

4.2 Related work

In addition to scientific literature about story generation, which we discussed in
Section 3.4, we now describe work related to NaNoGenMo and measuring and
ensuring narrative coherence of generated texts.

4.2.1 NaNoGenMo

NaNoGenMo was invented in 2013 by Darius Kazemi. His inspiration was NaNo-
WriMo, or National Novel Writing Month, an online event in November where
participants are challenged to write a 50,000 word novel in 30 days.

The first attempt to create a survey of text generation methods used by Na-
NoGenMo participants was a blog post in Russian by Shevchenko [239]. The
author discussed projects of NaNoGenMo 2013–2015, and categorised them by
generation technique, such as Markov chains, recycling existing works of fiction,
simulation, high-level plot generation, and neural networks. Inspired by this
blog post, the NaNoGenMo community conducted their own survey2 of methods
(2016) and programming languages (2014–2017) as part of the event.

There is some cross-pollination between the NaNoGenMo community and
academia. Participants sometimes refer to research articles, either for their own
projects or to help other participants. Additionally, NaNoGenMo has been men-
tioned in scientific literature in fields that have a close connection to the goal of
the event: procedural generation for games [145], story generation [188, 134]
and computational creativity [184, 75, 70].

Cook and Colton [75] discuss the NaNoGenMo community in detail in their
paper on online communities in computational creativity. Although they review
some of the projects from NaNoGenMo 2016, the focus of their article was not
the methods or quality of the projects, but rather the community of NaNoGenMo
itself. Montfort [188] developed a novel generator called World Clock, as entry
for NaNoGenMo 2013. Interestingly, most of the researchers citing NaNoGenMo
have participated themselves in the past.

4.2.2 Narrative coherence

The generation of long stories, such as the 50,000 word novels of NaNoGenMo,
places strong demands on coherence: the set of events in the story need to be
linked, and preferably also fit into some overarching dramatic structure.

One way of achieving coherence in generated stories is by imposing a specific
structure on the output text. Researchers have investigated the structure inherent
in existing stories to find out how humans do this. Propp’s model of the structure
of Russian folktales has been used in various story generation systems [108].

2The surveys can be found by searching for issues labeled ‘admin’ in the GitHub repositories
for those respective years.

4

66 | Chapter 4

Alternative narrative structures that have been used to guide story generation
are Booker’s seven basic plots [126], the Hero’s journey or Monomyth [99] and
the Fool’s journey from tarot cards [257].

In neural text generation, it is less easy to impose a narrative structure on
the generated texts – unless the task is split into two steps, planning and realisa-
tion, such as in the work of Yao et al. [289]. Another way to improve the global
coherence of texts generated with recurring neural networks was proposed by
Holtzman et al. [131], who used a set of discriminative models that encode var-
ious aspects of proper writing.

Another way of achieving coherence is through emergent narrative [11]. This
is a type of narrative (at the fabula level) that emerges from simulating simple
behaviours that, when interacting, create a complex whole. The simulation gives
rise to a sequence of causally linked events which give coherence to the story. The
coherence in emergent narrative tends to be mostly local in nature: although the
events are linked through their immediate causes and consequences, it is difficult
to impose a global dramatic arc on them. Examples of generation systems that
use the emergent narrative approach are FearNot! [12], the Virtual Storyteller
[262] and the simulation framework from Talk of the Town [225].

Simulation-based narratives are particularly suitable for game-based story
generation, since games often already have a world-state, characters, objects
and a set of rules that describe valid changes to the game state. The rule system
of role-playing game Dungeons & Dragons [124] is the most well-known of its
kind. Various story and quest generation systems [180, 263, 155] have been
built upon this and other related rule systems.

4.3 Data

NaNoGenMo uses GitHub’s built-in issue tracker to keep track of all user submis-
sions. Every issue corresponds to one NaNoGenMo project. In the issue thread,
participants can post comments, interact with other users, share their develop-
ment process and publish previews of the generated novels.

We downloaded all issues from the NaNoGenMo 2018 repository3 as JSON
data using the GitHub API. We took issues into account that were opened be-
tween the start of NaNoGenMo 2018 and March 2019, that were labeled as
‘completed’ and not labeled as ‘admin’. The label ‘completed’ means that both
the generator code and a 50,000 word output are publicly available. All 61 is-
sues4 were manually reviewed, by looking at the programming code, the output,
the tools and used datasets. For practical reasons, we ignored projects in other
languages than English.

3https://github.com/NaNoGenMo/2018
4Throughout this chapter we will reference each project by its issue number on GitHub.

The details of each project can be found on the corresponding issue page on GitHub, i.e.
https://github.com/NaNoGenMo/2018/issues/{issuenumber}.

4

Low-cost story generation in the wild | 67

We have made the data5 for our analysis in this chapter available online. We
also communicated6 this research to the participants of NaNoGenMo 2018 in the
official Github project, and asked for their feedback on the collected dataset prior
to publication of the related research paper. We did not receive comments or
feedback from participants on the published dataset. A few participants reacted
positively when our research paper was published in 2019.

list of strings9

word art

7

game

1

poetry

6

visual art

1

prose

35

Figure 4.1: Output type of completed NaNoGenMo 2018 projects.

NaNoGenMo uses a loose definition of ‘novel’: any text of more than 50,000
words qualifies as an acceptable output. There are no rules dictating the format,
style, grammaticality, subject or content of the text. As a result, the outputs vary
greatly from one another. See Figure 4.1 for a categorisation of NaNoGenMo
projects according to their output type. Most projects generate a novel-like text,
with a form that resembles sentences, paragraphs and chapters. One participant
(project 72) created a generator for an Interactive Fiction game. Other projects
generated word art, e.g. repetitions of one word, ASCII art or text without mean-
ing, poems, graphs or lists. In the rest of this chapter, we will limit our discussion
to the 35 projects that generate novel-like text.

For an overview of the programming languages used in the projects, see Fig-
ure 4.2. Some projects used multiple languages. The availability of good NLP
and NLG resources in a particular language has probably contributed to people
choosing those languages. Consequently, the choice for a particular program-
ming language may have influenced the chosen text generation and narrative
generation approach, and vice versa. Both Python and Javascript, the two most
popular programming languages with NaNoGenMo participants, have accessible
libraries for text processing and text generation. Participants that programmed in
Python mainly used Markovify, SpaCy and NLTK; Javascript projects used mostly
Tracery [70], a Javascript library for text generation with context-free grammars.
The developers of Tracery specifically mention the NaNoGenMo community as
the target audience for Tracery, which could explain the wide adoption of Trac-

5https://github.com/jd7h/narrative-gen-nanogenmo18
6https://github.com/NaNoGenMo/2018/issues/2#issuecomment-496199766

4

68 | Chapter 4

python

20

javascript
6

bash

3

ruby

2

php

2

lua

2
c

2
samovar

1 r
1

julia
1 java
1 haskell
1

Figure 4.2: Programming languages used in NaNoGenMo projects. Projects that use more
than one language are counted multiple times. We counted Bash as a language
in the instances where a Bash-script was used to generate part of the output
text.

ery within the NaNoGenMo community, as well as the large number of projects in
Javascript, a programming language that is not typically used for text generation
or text processing.

In addition to NLP libraries and tools, most participants use externally sourced
text data. Public domain books from Project Gutenberg7 and The Internet Archive8

were very popular with NaNoGenMo participants, as was Darius Kazemi’s Cor-
pora9 repository, which is a collection of word lists organized by subject, such as
games, medicine and religion. Some participants created their own corpora from
online resources, such as databases of subtitles, marathon reports, horror stories
and reports of personal experiences with psycho-active drugs.

4.4 Text generation methods

The 35 novel generation projects of NaNoGenMo 2018 use a variety of text gen-
eration methods to create the surface text of their novel. In this section, we
provide a survey of the various approaches we have seen.

4.4.1 Templating

More than 10 projects use some form of templating. Libraries such as Tracery
offer a fast way to implement this in Javascript and Python. Most text templates
were hard-coded in the generator, which is time-consuming and requires manual
effort. An alternative approach used in some projects (projects 64, 101 and 104)

7www.gutenberg.org
8www.archive.org
9https://github.com/dariusk/corpora

4

Low-cost story generation in the wild | 69

was to create templates automatically, e.g. by running all sentences from a corpus
through a part-of-speech (POS) tagger and creating sentence templates from the
POS-tags.

The popularity of templating is not surprising, as templates offer a strong
form of control over the surface text. However, using templates does not guaran-
tee a good quality output. If templates are filled with randomly chosen phrases,
as was done in some projects, the quality of the generated text may be worse
than that of a text generated with Markov chains (discussed next).

4.4.2 Markov chains

At least 8 projects used Markov chains for text generation. Markov chains are sta-
tistical language models, which can be created fully automatically from corpora.
They can be used for text generation by choosing a start token and using the
probabilities in the model to choose the next token. Using Markov chains is an
accessible approach to text generation, as it does not require coding the content
of the output. Markovify10, a Python library for working with Markov chains, was
used by the majority of users that used Markov chains for generation. We believe
that Markovify has contributed to the popularity of the Markov chain approach
under NaNoGenMo participants.

Not your average ultra (project 89) creatively mixes the outputs of two Markov
chains. One Markov chain was trained on a collection of marathon reports, the
other on a dataset of reports of personal experiences with psychoactive drugs.
As the generator produced more text, the influence of the second Markov chain
on the generator grew stronger, which resulted in output in the form of a race
journal that becomes progressively delirious over time.

Although the outputs from a Markov chain are often less coherent than those
produced by templates, the advantage of Markov chains is that they often yield
surprising or interesting results. For participants that value creativity over coher-
ence, Markov chains are a suitable technique for text generation. As we will see
in Section 4.5, the resulting lack of coherence is not always a problem.

4.4.3 Remixing

Remixing external sources, such as text from existing novels, was also a popular
approach with participants. More than half of the projects use some form of
remixing to create their output. One example of remixing is creating a new text
by taking a source text and substituting words from the text according to specific
rules. A hilarious example of this is Textillating (project 96), where Dickens’
Great Expectations is ‘improved’ by increasing the number of exclamation marks
and substituting each adjective in the text with its most extreme synonym.

10https://github.com/jsvine/markovify

4

70 | Chapter 4

Some participants collected external sources and composed their novel by
cutting-and-pasting sentences from these. For example, Doctor, doctor! (project
86) used the corpus of Yahoo! health questions and answers to generate a di-
alogue between a doctor and a patient. Another participant scraped sentences
from GoogleBooks about a set of topic words, and created an original text by
cutting-and-pasting snippets from Google Books preview files. In some cases,
remixing was paired with statistical modeling. The author of Angela’s claustrum
(project 28) transformed a manually-written NaNoWriMo novel draft into an out-
line and remixed this into a new novel by using a stochastic model of Gutenberg
texts.

With this category of methods, either the output text is very similar to the
source text (and similarly coherent), or the output is completely new but loses
some coherence in the process, often because developers chose to introduce ran-
dom words into existing sentences in their word substitution.

4.4.4 Machine Translation

There were various generators that used machine translation techniques for cre-
ating a novel. Project 22 created a new text by mapping every sentence of
Northanger Abbey by Jane Austen to a sentence written by Sir Arthur Conan
Doyle, using sentence embeddings.

Project 61 used machine translation to transform the text of one of L. Frank
Baum’s Oz books. All dialogue from the book was translated to the “language” of
The Muppets’ Swedish Chef, and all other text was translated to Valleyspeak.11

One participant (project 33) used a public domain movie as the basis for
their novel. They turned the movie into a collection of screenshots and fed this
to Microsoft Cognitive services to generate captions for the screenshots. The
captions were then transformed into novel text. This can be seen as a form of
machine translation. Instead of translating between different languages, this
project translates between different modalities (video to image, image to text).

Machine translation within NaNoGenMo can be seen as a form of remixing,
and the drawbacks are indeed very similar. Either the output text shows a strong
resemblance to the original text, or it is more creative but ends up incoherent.

4.4.5 Deep learning

Finally, there were three projects that used deep learning to create their novel.
Two projects, project 73 and project 76, used Torch12 to create an LSTM archi-
tecture trained on an external dataset. Project 73 trained the LSTM on a crowd-
sourced collection13 of Dungeons & Dragons character biographies, and project

11Valleyspeak is an American social dialect that originates from the San Fernando Valley in
Southern California.

12http://torch.ch/
13https://github.com/janelleshane/DnD_bios

4

Low-cost story generation in the wild | 71

76 used user-written horror stories scraped from CreepyPasta.14 Both projects
have output that is neither coherent nor grammatical. However, the LSTM does
manage to convey the typical writing style of RPG biographies and horror sto-
ries. Finally, project 99 used machine learning to investigate whether a neural
network trained on the text of Moby Dick could succesfully reconstruct the orig-
inal text, by predicting the sequence of sentences.

4.5 Methods for narrative coherence

NaNoGenMo output is at least 50,000 words, or roughly 75 pages of text. This
is a much greater length than is usually produced by story generation systems.
In computational creativity and creative NLG, typical outputs range from tweets
(140-280 characters) to stories of one or two pages, with exceptions such as
Curveship [186], UNIVERSE [159] and World clock [188].

To see how NaNoGenMo participants generate coherent novel-length narra-
tives, we performed an informal qualitative analysis of the outputs of the 35 text
generation projects, specifically focusing on coherence and the presence of nar-
rative structure. Out of the 61 projects of NaNoGenMo, only 14 projects had
a narrative structure, that is, they exhibited coherence as discussed in Section
4.2.2. Below we give an overview of the four approaches used to achieve this.

4.5.1 High-level specification

Some projects achieve coherence by hard-coding a narrative structure in their
input. The League of Extraordinarily Dull Gentlemen (project 6) defines that nar-
rative structure in a specification written in Samovar, a PROLOG-like domain-
specific language for world-modeling using propositions. The specification is a
high-level description of the story, with its representation level a mix of a fabula
and surface text: it is not just a sequence of events, but also includes dialogue
and narrative exposition. The surface text for its output was generated by run-
ning the specification through Samovar’s assertion-retraction engine15, taking
the resulting sequence of events and realising those into sentences with a Python
script. This approach is similar to that of other story generation systems that
use logic programming to generate stories or fabulas, such as Ceptre by Martens
[180], Robertson and Young [218]’s General Mediation Engine, and the work of
García-Ortega et al. [99].

Hard-coding a narrative arc in a specification can be seen as high-level tem-
plating. It also has similar advantages as templating: because the author speci-
fies the narrative arc by hand, they have tight control over the surface text, which
results in an output that looks like it was written by a human. However, this ap-
proach places an authorial burden on the developer of the generator. The story

14https://www.creepypasta.com/
15https://catseye.tc/article/Languages.md#samovar

4

72 | Chapter 4

of project 6 of 50,000 words was generated in 930 lines of Samovar. We expect
that the effort of writing such a specification could be reduced with code gen-
eration. Another disadvantage is that one story specification defines exactly one
surface text. The surface text of project 6 includes little variation. The book con-
sists of scenes where multiple characters perform the same action in sequence.
Repeating patterns are clearly visible in the output text, making for a dull read
– hence the title of the project. However, the output of project 6 sets itself apart
from other generated novels by having grammatical surface text and maintaining
a clear traditional narrative arc throughout the entire story with a beginning, an
incident, a climax and a problem resolution.

For authors that want to generate a story out of a high-level story description,
using a domain specific language like Samovar might be a suitable solution. The
code for this NaNoGenMo project is very readable and could serve as an intro-
duction to this approach. As this approach requires the user to write part of the
story, it is less suitable for projects where the author also wants the generator to
create the contents of the fabula, or requires a lower cost in terms of writing the
code and specification.

4.5.2 Hard-coded narrative elements

Instead of hard-coding the narrative structure of the entire story in the gener-
ator, it can be hard-coded only in specific places. An example of this approach
from outside NaNoGenMo is described by Reed [210], who used a grammar to
generate ‘satellite sentences’ that can be inserted in a larger human-authored
narrative for an interactive fiction game. Satellite sentences are sentences that
moderate pacing and reestablish context within dialogue scenes [210], such as
“She coughed”, “The clock was ticking” and “It was getting late”.

There were several NaNoGenMo projects where the generated text itself had
no structure at all, but where the developer still created a narrative by providing
a hard-coded section at the beginning and/or ending of the book. Having a
fixed beginning and ending can tie otherwise incoherent pieces of generated text
together, as it gives readers a context in which they can interpret the generated
text. Even text generation techniques that normally do not lead to coherent
output, such as Markov chains and random generation, can still be ‘saved’ by
using this technique.

An example is Not your average ultra (project 89), which succesfully frames
the (in)coherence of text generated by Markov chains by naming the specific
setting of the novel at the beginning and end: an ultramarathon.

Similarly, The Defeat at Procyon V (project 83) contains 50,000 words of di-
alogue between a science fiction Fleet Commander and their Super Admiral.
The lines of dialogue are randomly generated from a grammar of science fic-
tion techno-babble, occasionally interspersed with exposition sentences, similar
to the satellite sentences from Reed [210]. Because the beginning and ending of

4

Low-cost story generation in the wild | 73

the novel are fixed, the reader has a context in which to interpret the conversa-
tion: the conversation is about the various weapons and technologies that were
deployed in the defense of Procyon V.

With this approach, the problem of generating a coherent narrative is trans-
formed into writing narrative elements that frame the generated text in such a
way that the reader perceives a narrative in the entire text. It particularly useful
in instances where developers prefer straight-forward text generation techniques
over narrative generation techniques, and for developers that want to write as
few lines of code as possible.

4.5.3 Simulation

There were various projects (projects 11, 18, 39, 60 and 100) that used simula-
tion as the basis for their narrative. The projects with simulation-based narratives
had two things in common.

Firstly, most projects used rule systems that are similar to those of well-known
role-playing games. For example, The Longest Corridor (project 18) uses a combat
system that closely resembles that of tabletop game Dungeons & Dragons [124].
The project generates stories about a mythical corridor filled with monsters and
treasure. For each chapter of the novel, the system generates a hero who has to
fight their way through the corridor. If the hero is defeated by the inhabitants, the
hero’s remains will stay in the corridor for later heroes to find. If the hero reaches
the end of the corridor and finds the treasure, they install themselves as the
new master of the corridor, waiting for new adventurers to come and challenge
them. This continuity, where characters of previous chapters (old world state)
can interact with characters from current chapters (current world state), is what
moves this project from a straight-forward simulation into the realm of narrative.
Similarly, Of Ork, Fae, Elf and Goblin (project 39) generates a fabula of a group of
creatures that fight each other with procedurally generated weapons in different
rooms.

Another roleplaying-game inspired project is High Fantasy with Language Gen-
erator (project 60). Instead of having one global text-level simulation that tracks
the world state and governs the entire narrative, it uses multiple low-level sim-
ulations that each govern one type of event. The project follows a group of
adventurers on their quest. During their travels, the characters encounter mon-
sters, visit local taverns and play dice games with strangers. For each of these
scenes, the generator uses a separate simulation.

A second property of simulation-based novels is that they often have a journal-
like format. The world state of the simulation gives rise to the surface text of the
story. Since the world state is updated with each clock tick, it is intuitive to let
the novel’s sections (chapters, paragraphs) correspond to one clock tick. Conse-
quently, simulation-based narratives are particularly suitable for generating jour-
nals or logbooks, in which each section corresponds to one unit of time. The

4

74 | Chapter 4

Pilgramage (project 11) is an example of a project that follows a journal format.
A weakness of some of the simulation-based projects in NaNoGenMo is that

they generate events that are not linked to each other. An example is Wheel of
Fortune (project 100), which simulates characters who slowly grow old and die,
all the while experiencing events that are generated from randomly drawn tarot
cards. The resulting sequence of events looks like a fabula. However, the events
are not related to each other and do not influence each other: the characters’
actions happen completely in a vacuum. This does invite the reader to imagine
their own narrative, but this requires a lot of effort on part of the reader. Still,
symbolism from tarot cards can be used successfully to shape a narrative when
combined with other methods, such as high-level specification of narrative struc-
ture (see Section 4.5.1). A story generator from outside NaNoGenMo that also
used the tropes from tarot was developed by Sullivan, Eladhari, and Cook [257].
However, Sullivan, Eladhari, and Cook used the tarot cards to generate movie-
like story synopses, with a plot structure based on Booker’s seven basic plots and
screenwriting principles.

4.5.4 Evoking a narrative

Some of the project outputs evoke a narrative in the mind of the reader, even
though there is no narrative structure explicitly present in the text. This can
even be the case for output texts that are not grammatical. Incoherent texts that
still have a recognizable novel form force the reader to guess the meaning of
the author. This subjective interpretation might lead the reader to perceive the
generated novel as a coherent whole.

As Veale [276] notes in his paper on tweet generation, form can be more im-
portant than content. Veale calls this effect ‘charity of interpretation’: if humans
see a text in a well-known form (or container), they are disposed to attribute
more meaning to the text than it actually has. NaNoGenMo participants achieved
this effect in three ways.

If the text of the novel is limited to a specific subject, readers will try to fill
in the gaps in the structure with their own knowledge and expectations. An
example of a project that limits its topic to instill a sense of coherence is Doctor,
doctor! (project 86). The output text has the form of a dialogue, consisting
of randomly chosen questions and answers from a dataset of Yahoo! questions
from the health domain. The questions and answers have no logical connection
whatsoever, but the vocabulary and writing style will be recognizable to readers
who are familiar with medical discussions on the internet. Even though the
answers of the doctor make no sense in the context of the respective questions,
readers will infer that this novel is about a dialogue between a doctor and their
hypochondriac patient.

Another technique for evoking a narrative is by connecting unrelated random
elements with each other to improve the perceived coherence. Out of Nowhere

4

Low-cost story generation in the wild | 75

(project 57) simulates an interaction between its characters by connecting inter-
actions at the word level, which we explain below. Out of Nowhere produces
the script for a play, based on lines of English text from public-domain phrase
books. These phrase books consist of collections of sentences in two languages,
for example for language learners or travelers in a foreign country. The charac-
ters represent different nationalities, and their dialogue lines are based on the
text of phrase books for their respective languages. The character dialogue is
generated by choosing lines from each character’s phrase book. Most dialogue
lines are chosen randomly, but the generator increases the coherence of the out-
put with a few tricks. Both the location and the interactions are influenced by the
words that occur in previous lines. For example, if the previous line contains the
word ‘waiter’, the generator will include a restaurant or cafe in the scene. Sim-
ilarly, if one of the previous lines contains a question mark and an interrogative
word (“what”, “who”, etc.), the generator will assign a higher probability to lines
that would constitute a logical answer. For example, if previous lines contain the
phrase “Where is ...?” the generator favors sentences like “In Timbuktu” or “At
my house”. This approach is similar to the one used by Reed [210], in which
the text generator takes different types of context into account, such as dialogue
progression, location and time of day. The difference is that Reed tagged his
text with locations for the satellite sentences, whereas project 57 generates all
sentences and their connections on the fly. The result is a script that has similar
quality as the generators that use the simulation approach, even though there is
no underlying world state for this play. All the coherence comes from word-level
choices.

Besides limiting the topic of a text, using the right style can increase the
perceived coherence of a text as well. If a reader recognizes a particular style
from a particular type of narrative, the reader might infer meaning where there
is none. A project that adapts this idea in an original way is Velvet black skies
(project 65), which uses statistical modeling to find the most cliche sentences in
a corpus of science fiction writing. The developers defined cliches as “n-grams
that occur in the texts of more than 30 authors.” The generator creates a new
text from these cliches by clustering them by topic and by remixing them into
a chapter for each topic. Readers of science fiction classics will immediately
recognize the particular style of vintage science fiction.

The above techniques ask something extra of the reader during the interpre-
tation of the text. As such, they are suitable for situations where the writer wants
to highlight the subjective experience of the reader in ascribing meaning to a text.

4.6 Discussion

In the previous sections, we described the most prevalent text generation meth-
ods from NaNoGenMo 2018 and their respective advantages and disadvantages.
We discussed four different approaches that were used to achieve coherence (or

4

76 | Chapter 4

the semblance of it) in novel-length texts, highlighting some of the most creative
projects.

This chapter described the methods for text generation used by NaNoGenMo
2018 participants, and divided these methods into four categories: hardcoding
a high-level narrative, hardcoding contextualizing beginnings or endings, emer-
gent narrative, and faking coherence.

If there is already a high-level story arc thought out for the surface text, using
a high-level specification to define this story arc is a good approach. Hard-coding
the high-level narrative arc in a specification can reduce the authorial burden of
manually writing the full text significantly. However, the approach is not suitable
for projects where the generator should generate the fabula in addition to the
surface text. We saw only one project in NaNoGenMo with this approach. Al-
though the surface text was high-quality compared to other projects, it was also
repetitive and would not be mistaken for a human-written story.

If the generator is also in charge of generating the events that underlie the
surface text, a simulation-based or emergent narrative approach is a good choice.
Emergent narrative has been applied in various story generation systems already,
most notably for the games domain, because of the overlap in functionality be-
tween simulations for narratives and rule systems for games. A weakness of
simulation approaches is that, if the generated events are not interrelated, the
sequence of events generated by a simulation lacks narrative coherence.

However, even text generation methods that do not create coherent text can
be turned into a narrative, either by hardcoding narrative elements, such as
a contextualising beginning or ending, or by evoking a narrative by exploiting
readers’ charity of interpretation.

4.6.1 Limitations

A limitation of this overview is that it is only a snapshot of the NaNoGenMo
challenge. Since the work from this chapter was published in 2019, natural
language generation techniques have developed further, including new language
model architectures such as the Transformer [275]. Pre-trained language models
like GPT-2 [209] and BERT [85] have gained in popularity and are currently
being used for various creative generative projects. Later editions of NaNoGenMo
reflect these developments.

The definition of coherence that was used for the informal analysis of con-
tributions was fairly loose. We were only interested in obtaining inspiration for
approaches for low-cost, relatively coherent text generation. However, it is clear
that a more theoretically grounded and in-depth analysis of the coherence of
each project would have been beneficial in assessing the generative power of the
four identified approaches. It would also have been interesting to rank the con-
tributions according to narrative quality, and treat the best performing narratives
more in-depth.

4

Low-cost story generation in the wild | 77

This chapter considers all NaNoGenMo contributions in isolation. Comparing
multiple projects with each other might enable us to draw conclusions about the
efficacy of the four high-level techniques for generating coherent novels. Unfor-
tunately, manually comparing 35 novel-length texts would be too labor-intensive.
Automatic evaluation of NaNoGenMo contributions, for example on the coher-
ence property, could be a solution to this problem. The research conducted by
Scheuter [232], on scoring long fictional texts on semantic and syntactic coher-
ence, is a first step in this direction.

4.6.2 Automatic evaluation of NaNoGenMo contributions

To automatically evaluate NaNoGenMo contributions, we could use metrics for
assessing coherence in generic natural language text. As Gervás [109] mentions
in his survey on story generation, evaluating and comparing story generators
is intrinsically a hard problem, because of the variation in definitions of what
makes up a story. Evaluating and comparing the narrative quality and coherence
of stories is similarly elusive.

We could use existing metrics for assessing coherence in generic natural lan-
guage text. However, NLP research focuses mostly on non-fiction text, which is
typically more topically coherent than fiction. Existing metrics might therefore
not be suitable for generated fiction. As far as we know, no automatic metrics
for measuring coherence in fiction currently exist, although Kybartas and Ver-
brugge [155] have proposed a collection of metrics for assessing the quality of
quests in video games. Narrative quality metrics could also be used to quickly
sift through the large number of NaNoGenMo contributions, to find the most
promising projects in each year’s challenge. This could save time for researchers
who want to continue studying NLG in the wild.

Alternatively, we could use other quantitative properties of the Github issues
as a proxy for narrative quality or code quality, such as Github stars, i.e. fa-
vorites and bookmarks, or forks, i.e. a copy or modification of an existing project.
This has been used in other research, including research for assessing popularity
[272], research software impact [89] and communication efficacy in open-source
communities [48]. However, in 2018 the NaNoGenMo community was still fairly
small. Furthermore, the amount of interaction with Github projects is not solely
determined by the content of a project, but also by issue activity during NaNo-
GenMo, number of Github followers of the project author, social media presence
of the project author, and other factors [44]. Consequentially, this method would
probably not yield enough information to make a representative ranking of all
finished projects.

4.6.3 From novels to the video games domain

How do the techniques from this chapter translate to the video games domain?
Since many video games contain stories, the four approaches for coherent narra-

4

78 | Chapter 4

tive generation from this chapter could also be applied to video game narratives
instead of novels. However, video games often contain interactive narratives,
whereas novels generally consist of static text. This limits the applicability of
the described techniques for the video games domain. However, game narratives
range from fully static to fully interactive narratives. If the video game narra-
tive is at the ‘static’ end of this range, the methods might be usable for creating
a video game narrative. Game narratives also differ in structure, compared to
novels: games narratives can consist of a monolithic, single story, or they can be
made up of various smaller, interrelated or independent narratives. Depending
on the level of interactivity in a game, the described techniques could be used,
either for generating a single, coherent narrative, such as a main quest line for
an RPG, or parts of a narrative, such as a part of a quest or a piece of flavour text.

The first approach, hardcoding a narrative arc in a domain-specific language,
could be suitable for games that contain a single, static narrative. We find this
type of narrative in single-player games with one fixed storyline, such as DevOps:
The Line [287] or Wolfenstein: The New Order [178]. If a game has an interac-
tive story, i.e. player choices could influence the narrative, using live generation
with logical programming might be too computationally expensive. Since a spec-
ification of a narrative arc is suitable for one (type of) narrative, this method
does not scale well across different games or even different stories. This would
suggest this method is most suitable for linear games with a largely manually
authored narrative.

Hardcoding narrative elements is already common practice in video games
that use procedural content generation. Rule-based procedural generators often
create a specific type of assets, or assets that incorporate a central theme. Man-
ually authored content can contextualize that theme for the player, and make
them experience the generated content as more coherent. A concrete example
of this is Skyrim’s Radiant quest system [30], which creates new side quests for
the player on the fly. All sidequests fit into the manually authored backstory of
Skyrim, which centers on a civil war between the local Nord populace and The
Empire which rules Skyrim as a province. The civil war and resulting unrest
can function as a backdrop, narrative context or even directly, as the underlying
cause for the objective of generated subquests.

Simulation or emergent narrative is an approach to narrative creation that is
very common in video games. Many simulation and survival games, such as The
Sims [264], Kerbal Space Program [248] and Oxygen Not Included [149], feature
no hand-written narratives but contain extensive rule systems. Examples of rule
systems are systems that govern in-game physics (Kerbal Space Program), con-
struction rules for combining in-game resources to create new game elements
(Kerbal Space Program, Oxygen Not Included), or social relationships between
in-game characters (The Sims, Oxygen Not Included). These narratives are cre-
ated during gameplay from how game elements interact with each other, while
following the underlying rule systems. However, most of these narratives will be

4

Low-cost story generation in the wild | 79

implicit in the sense that the narrative is only acted out by the game elements,
instead of appearing as explicit surface text in the game. Some recent games do
realise surface text for their emergent narrative, such as survival game Rimworld
[176], which features an “AI narrator” that summarizes the emergent narrative
events.

The final approach that we discussed is evoking a coherent narrative, or fak-
ing coherence by tricking the reader. This approach is also used in games, al-
though it is less widespread than mixing procedural content with manually au-
thored content (the first two approaches) and emergent narrative. We already
discussed a few examples in Section 2.5.2. Rogue-like game Caves of Qud [95]
uses the ‘faking coherence’ approach [119] for generating biographies for Sultan
NPCs. Instead of generating the life events of the NPC first, and the biography
second, the generator works backwards. The generator starts with generating a
set of random historical events, and finishes by linking all these events together.
Randomly generated historical events are framed in a new context to form a co-
herent biography. Backwards generation is also common in procedural murder
mystery and information games, such as DATA Agent [117] and ClueGen [255].
In these games, the generator has to make sure it creates solvable murders. To
enforce this generative goal, first the murder is generated, and then a plausible
motive, location and character relations.

The evoking coherence approach is much broader than reverse generation
to ensure solvability. The projects discussed in this chapter show that by play-
ing with the expectations of the reader, for example by generating output with
the right form, topic or style, procedurally generated game assets can suggest
coherence to readers/players, sometimes at very low cost.

We encourage the PCG and NLG research communities to keep an eye on the
online creative communities, such as NaNoGenMo, as these typically contain art
and programming enthusiasts that are early adopters of new NLG techniques in
the wild. Collaborating with and borrowing techniques from these communities
might yield interesting new insights for all involved. Given the popularity of
tools such as Tracery [70], Markovify, and gpt-2-simple (in later NaNoGenMo
editions), online communities can give us insight in how we can make generative
tools more usable and accessible for non-NLG-experts.

4.7 Conclusion

In this chapter we gave a high-level overview of the different approaches for
generating coherent narratives from NaNoGenMo 2018: hardcoding a high-level
narrative, hardcoding narrative elements, emergent narrative and evoking coher-
ence. We briefly discussed example projects for each approach, and connected
them to existing research literature. Finally, we discussed the applicability of
each approach for the video games domain. We saw that some approaches are
already used in video game development. The fourth approach, evoking a co-

4

80 | Chapter 4

herent narrative by playing with the reader’s expectations, seems worthwhile to
investigate further, as it is not yet widely used in game development. This ap-
proach is be a low-cost method for creating procedurally generated game assets
that are perceived as being coherent. In the next chapter, we will build upon this
method of evoking coherence when we create flavour text headlines for video
games.

5

5
Generating flavor text headlines

In the previous chapter, we found four approaches for generating coherent fic-
tion in the contributions to NaNoGenMo 2018. One of these approaches is ‘faking
coherence’, which exploits the human tendency to see patterns in unconnected
data. This approach seems particularly useful for generating flavor text with a
low-cost approach. The faking coherence method is very promising for text gen-
eration for games, because it requires relatively little effort in terms of authoring,
and few computational resources.

The NaNoGenMo projects that used this approach found a variety of ways
to achieve increase perceived coherence: playing with the reader’s expectations
by following a certain form, structure or style, or using specific words, themes
or topics. The projects have in common that they contextualize generated text
in such a way that it is perceived as coherent, even if the text is unstructured,
unrelated, incoherent or random. The reader is invited to come up with a logical
explanation for the contents of the text. This interpretative action might help
in creating the illusion that the perceived relations in the text were introduced
deliberately by the text generator (or a human writer). We can find a similar
concept in the work of Tony Veale, who has investigated metaphor generation
and computational humor in the computational creativity field. Veale describes
how the form of generated textual outputs, and not just the content, determines
how readers interpret the text.

This chapter describes an NLG prototype that uses low-cost techniques for
creating coherent flavor text, namely template-based generation and text mod-
ification. To increase the perceived coherence of generated text, we use two
strategies from the previous chapter. Firstly, text generated by the prototype has
a familiar form: flavor text in the form of headlines. Secondly, the text generator
generates headlines based on an input text. The input text acts as starting point
and context for the output. The prototype reuses words from the input text,
synonyms and related concepts. This should increase the perceived intertextual
coherence of the input text and output text.

5

82 | Chapter 5

The main contributions of this chapter are:

• a design for a flavor text generator with a modular architecture that creates
flavor text in the form of headlines

• an implementation of the flavor text generator that uses pre-existing data
and open-source libraries

• an evaluation of the flavor text generator with human participants that
shows that the approach for evoking coherence in the reader works in prac-
tice

This chapter is based on the following peer-reviewed publications:

• Judith van Stegeren and Mariët Theune. “Churnalist: Fictional Head-
line Generation for Context-appropriate Flavor Text”. In: Proceedings of
the Tenth International Conference on Computational Creativity. ICCC ’19.
Charlotte, NC, USA: Association for Computational Creativity (ACC), 2019,
pp. 65–72

• Judith van Stegeren and Mariët Theune. “Remixing Headlines for Context-
Appropriate Flavor Text”. In: Proceedings of the IEEE Conference On Games.
London, UK: IEEE, Aug. 2019

5.1 Introduction

In this chapter, we describe Churnalist, an interactive system for generating news-
paper headlines for a given context. Our system is meant for generating fictional
headlines that can be used in games. Most headline generators take a newspaper
article as input and summarize it in one sentence. In contrast to these systems,
Churnalist accepts free text as input and generates headlines based on nouns
extracted from the input text. By reusing nouns from the input text in the gener-
ated headlines, we aim to make the headlines context-appropriate, by which we
mean that readers will believe that the headlines are related to the input text.
We want to exploit the human tendency to see connections between texts (input
text and headlines) where there are none.

There are various games that use fictional news (in the form of headlines
or newspaper articles) to provide narrative context to the player. For exam-
ple, in city simulation game SimCity 2000 [182], the player has access to news-
paper articles with information about important city issues, disasters and new
technologies. Similarly, Cities Skylines [68] features a fictional social media
website called ‘Chirpy’, where virtual citizens of the player’s city express their
(dis)satisfaction with the player’s performance as mayor and city planner. Chirpy
messages are a mix of random flavor text messages that do not contain any infor-
mation about the current game state, and messages that only occur if there is an

5

Generating flavor text headlines | 83

underlying problem with the player’s city. In Deus Ex: Human Revolution [92],
the player can find ebooks and newspapers that refer to the social unrest that is
driving the game’s main storyline. Idle game Cookie Clicker [267] has a news
ticker with randomly generated headlines that reflect the player’s progress in the
game. For example, once the player has bought one or more units of ‘Grandma’,
i.e. an upgrade that creates extra cookies, the headlines start to include mes-
sages from “grandma”. If the player decides to sell one of the grandma upgrades,
the ticker might respond with “News : cookie manufacturer downsizes, sells own
grandmother!"

These fictional newspaper articles and headlines are an example of flavor text,
i.e. text that is not essential to the main game narrative, but creates a feeling
of immersion for the player. Immersion is especially important for role-playing
games and simulation games, as it gives the impression that the virtual world
the player is interacting with is a living and breathing world. In some cases, the
flavor text changes depending on the game state, such as with Chirpy and the
CookieClicker headlines.

Writing flavor text is a time-consuming task for game writers, and text gener-
ation can be a solution to this problem. Most games that incorporate text genera-
tion use simple templates or canned text. More complex NLG techniques rely on
linguistic models, which often take considerable effort to create and require lin-
guistic expertise. Statistical linguistic models can be created automatically from
a dataset of texts. However, generators with underlying statistical models offer
less fine-grained control over the output. Canned text and simple templates offer
balance between control over the output and ease of use. One drawback of this
approach is that players will figure out the underlying templates after playing the
same game for a while, or after replaying the game [13]. We think that natural
language generation techniques other than canned text and simple templates are
worth investigating in the context of game development, especially data-driven
approaches to text generation, as these can overcome the need for expensive,
handcrafted language models. We propose a system that can generate fictional
headlines in order to support game writers in the task of writing flavor text.

In Section 5.2, we will discuss related work. In Section 5.3 and 5.4 we will
present Churnalist: we describe the system goal, the architecture and the gener-
ation steps in detail, using a running example. We then describe our evaluation
experiments and discuss our results in Section 5.5.

5.2 Related work

In this section, we discuss work related to headline generation, text generation
for games and generative systems that take context into account.

5

84 | Chapter 5

5.2.1 Headline generation

Headline generation for non-fictional headlines is often seen as a document sum-
marization task, where headline generators take a full article text as input and
return a headline that describes the most salient theme or the main event of the
text. The literature distinguishes between extractive summarization and abstrac-
tive summarization approaches. Contrary to extractive systems, the output of an
abstractive system does not have to correspond to a sentence from the input text.
Possible approaches for abstractive headline generation systems are rule-based
[88], statistics-based [17] and with machine learning [67, 237], with the latter
winning in popularity in recent years.

Headylines [104] is an example of a headline generation system that focuses
on the creative side of writing headlines. It can be used to support editors in their
task of writing catchy news headlines. Given a newspaper article text as input,
it extracts the most important words from the text and uses these as seed words
for generating a large set of variations on well-known lines, such as movie names
and song lyrics. This research is a good example of combining natural language
generation with techniques from computational creativity.

5.2.2 Text generation for games

Text generation for games is a form of procedural content generation (PCG). Pro-
cedural content generation, which refers to the creation of content automatically
through algorithmic means, is a relatively new addition to the field of artificial
intelligence. PCG for games studies the algorithmic creation of game contents, de-
fined by citetyannakakis2011experiencedrivenpcg as all aspects of a game that
affect gameplay, excluding non-player character behaviour and the game engine.
Examples of game content are maps, levels, dialogues, quests, music, objects and
characters. Text generation techniques can be used for generating dialogue, sto-
ries, quests and flavor text for games. Although including generated game text in
video games is winning in popularity, these texts are often generated with simple
NLG techniques, such as canned text and simple templates.

Within the natural language generation field, there are various publications
that list game text as a possible application [233, 256, 177]. However, there are
few cases where the implemented system is actively used in a games context.
One example is Caves of Qud [95], which combines techniques from procedural
content generation and natural language generation to create a unique game
world for every playthrough. Notably, the game generates fictional biographies
for mythical non-player characters called sultans [119]. The biographies consist
of fictional events, or gospels, from the life of the sultan, such as starting a war,
acquiring a mythical weapon or forging an alliance. The game creators wanted
to infuse a sense of coherence in these biographies, even though the events were
randomly generated. They achieved this coherence by assigning a domain, such
as ‘glass’,‘jewels’, ‘ice’ or ‘scholarship’, to each sultan. The biography generator

5

Generating flavor text headlines | 85

incorporates domain-specific elements in each life event.
Players of Caves of Qud will interpret the randomly generated biographies as

coherent naratives, thereby creating their own logical explanation for the over-
arching theme in each biography. The developers call this human tendency to
perceive patterns ‘apophenia’. It is related to the ‘charity of interpretation’ ef-
fect studied by Veale [276], who found that “readers will generously infer the
presence of meaning in texts that are well-formed and seemingly the product
of an intelligent entity, even if this entity is not intelligent and the meaning not
intentional.” If humans see a text in a well-known form (or container), they
are disposed to attribute more meaning to the text than it actually contains. A
similar effect is the Eliza effect described by Hofstadter [129], who noticed that
humans will attribute intelligence or empathy to (text-producing) computer sys-
tems. With Churnalist, we want to exploit this effect too: by incorporating words
from the input text in the output, we hope that readers will perceive the gener-
ated headlines as coherent with the input.

The biography generator of Caves of Qud picks the domain-specific elements
for each gospel from a knowledge base, that links each domain to a set of words
and phrases. The developers of Cave of Qud have hand-written this knowledge
base, which gives them a great deal of control over the quality of the output.
In this research, we used a knowledge base for a similar purpose: to link seed
words to a set of related words. Instead of creating it manually, we used word
embeddings as the basis for our knowledge base.

5.2.3 Computational creativity systems and context

For Churnalist, we were inspired by how computational creativity systems create
text for a certain context, especially two computational creativity systems by
Gonçalo Oliveira.

O Poeta Artificial 2.0 [115] is a bot that tweets poems that are generated for
trending hashtags on Twitter. The bot is based on PoeTryMe [116], a poem gen-
eration framework for Portuguese. According to Gonçalo Oliveira, (generated)
poetry should follow three rules: convey a meaningful message, follow gram-
matical and lexical rules, and exhibit poetic features. PoeTryMe creates poems
that fulfill these requirements by filling a poem template with generated sen-
tences. The sentences are generated by the Sentence Generator based on a set of
seed words. To build sentences, the Sentence Generator uses a semantic graph
of relational triplets and a generation grammar. It uses the seed words to select
a subgraph of the semantic graph. Then, it selects a rule from the generation
grammar that matches one of the semantic relations in the subgraph. This rule
is used to generate a new sentence. PoeTryMe’s generation strategies determine
which generated sentences are used to fill the poem template. The PoeTryMe
framework uses external data sources to enrich the output of the system, such as
a database of Portugese poems, a semantic graph and lexical datasets. These data

5

86 | Chapter 5

sources can be changed depending on the needs of the user, which makes PoeT-
ryMe suitable for different applications within the poetry generation domain.

O Poeta Artificial uses trending hashtags on Twitter as topical seed words, to
generate poems that fit the hashtag. Initially, the Twitter bot had difficulty incor-
porating the topic, i.e. the trending hashtag, into its output. Trending hashtags
are often unique words or abbreviations, which means the hashtag is not present
in Poeta’s semantic graph. Consequently, the internal Sentence Generator could
not create sentences that contained the hashtag. This meant that the trend-
ing topic itself was rarely included in the output, which made the link between
the generated poem and the hashtag unclear to readers. To solve this problem,
O Poeta Artificial 2.0 was extended with new functionalities to strengthen the
connection between the poem and the hashtag, such as remixing fragments of
human-written tweets and using template sentences for introducing the topic of
the poem.

Another source of inspiration for Churnalist’s design was the Twitter bot
TwoHeadlines1 by Darius Kazemi, which creates new headlines by remixing the
topics of two existing headlines.

5.3 Description of Churnalist

Churnalist is a system for generating fictional headlines that are context-appropriate
for the textual input. In this section, we discuss the goal of the system and the
requirements for the output. We elaborate on the technical design of the system
and provide a running example.

5.3.1 System goal

We mentioned in the introduction that Churnalist is meant for generating flavor
text for video games, in the form of headlines. Instead of taking newspaper
article texts as input, as is common practice for headline generators, Churnalist
accepts user-supplied free text as input, in the form of English sentences from a
game. For example, see the one-sentence input in Figure 5.1.

“Mario must save Princess Peach from Bowser’s castle.”

Figure 5.1: An example of valid input text. The names and noun phrases that Churnalist will
incorporate in the output headlines are underlined.

Churnalist extracts a set of seed words from the input and creates new head-
lines by doing word-substitution on headlines from a database. The seed words
consist of words from the input. We expand the set of seed words by querying a
vector space of word embeddings for vectors close to the words from the input.

1Twitter bot Two Headlines, https://twitter.com/twoheadlines

5

Generating flavor text headlines | 87

Mario apologises to mother involved in car crash
Mario injured after Sicily volcano triggers earthquake
Mario says Arsenal return vs Qarabag was ‘emotional’
Mario: ‘My marriage is over because I voted to leave the EU’
Princess Peach unveils world’s first Chromebook with AMD processors
Bowser’s castle retains Border-Gavaskar trophy after cleaning up Australia on day
five

Figure 5.2: Example output of an early version of Churnalist, generated from the input text
in Figure 5.1.

By using words that have a link with the input text, or context words, we gener-
ate headlines that fit the context that is represented by the input. By inserting
context words in the headlines from the database, we hope to exploit the Eliza
effect [129], apophenia [119] and the charity of interpretation [276] in readers:
readers should think that the headlines are related to the context. Churnalist’s
output is a set of fictional headlines, see Figure 5.2.

Game writers can use Churnalist for flavor text generation by using prewrit-
ten core game text as input. The words from the game text will end up in the
generated headlines, with which we want to evoke a feeling of coherence with
the core game text. A longer example of game text as input is provided below, in
Figure 5.4.

Using free text input makes Churnalist useable for different games and differ-
ent topics. Regardless of the content or the type of game, as long as the input
text contains content nouns and noun phrases, Churnalist will be able to ex-
tract these from the input and use them as seed words to generate headlines.
Churnalist was developed using publicly available datasets, open source libraries
and only simple text modification techniques, so that no linguistic expertise is
required.

For Churnalist’s output, we adopt similar requirements as Gonçalo Oliveira
[116]:

1. The output texts must look like headlines. We are not generating news
article texts. The content of the headlines does not have to be realistic or
ground in reality. On the contrary: we aim for fictional output, as well as
output that is not literally present in the database of headlines (for copy-
right reasons).

2. Headlines must be grammatical.

3. Headlines must feel context-appropriate (coherent, meaningful, relevant)
for the input text to a not-too-discerning, not overly critical reader.

5

88 | Chapter 5

5.3.2 Architecture

We have implemented a prototype system with the architecture shown in Figure
5.3. Churnalist has a modular design so that every subtask can be implemented
or modified according to the requirements of the user, to make the system as
flexible as possible.

Figure 5.3: Churnalist: system architecture

Churnalist’s pipeline consists of three modules, one for every step in the gen-
eration process. At the end of every step in the generation pipeline, the user of
Churnalist can filter the output of the system, thus fine-tuning the nouns and
noun phrases that are used in later generation steps.

We have chosen this human-in-the-loop approach for multiple reasons. Gen-
erated outputs would have to be manually curated by a human user anyway, for
two reasons. Firstly, the method of substitution is not very sophisticated and can
easily lead to malformed outputs. Furthermore, Churnalist works with a corpus
of headlines sourced from real-world news outlets, such as the New York Times,
which might contain words or themes that are not suitable for specific audiences
or inclusion in a game in general. By allowing the user to influence the generator
after every processing step, the system provides insight and rapid feedback to the
user about how it perceives and uses the input. Errors in intermediate outputs

5

Generating flavor text headlines | 89

“You are the system administrator of SuperSecure ltd, a hosting company. At four
o’clock in the afternoon, your manager storms in. Apparently, there has been a
break-in in your computer network. The CEO has been receiving anonymous
emails from a hacker that demands a payment of $100,000 before midnight. If
SuperSecure does not pay, they threaten to publish sensitive company documents
online. The manager is worried, since the hacker claims to possess important in-
tellectual property.
Manager: Can you find out how the hackers got into our systems?
CSIRT: We recognize this mode of operation. We will share some relevant IOCs
with your company. Can you contact us if you have finished your forensical
analysis?
Security officer: There has been a nation-wide increase in phishing attacks in the
past few days.
System administrator: I can’t find any traces of active malware on our Windows
server. I will check the network log files for malicious activity.”

Figure 5.4: Representative input text for Churnalist: example game text for a hypothetical
dilemma-based serious game, consisting of a description and a few lines of NPC
text. Names and noun phrases are underlined.

can be filtered, which trickles down to later processing steps to create a larger
amount of usable final outputs.

The first module, the keyword extractor, reads the input text and extracts the
most important words. These words are the seed words. The second module
takes the list of seed words and expands this with a set of loosely related words,
gathered from the knowledge base. The seed words and the related words form
the set of context words. The substitution module takes a random headline from
a headline database, runs it through a dependency parser and substitutes parts
of the sentence with context words. The resulting new headline is the output
of the system. Users can generate multiple headlines from one input text; the
number of possible results is determined by (1) the number of seed words in the
input text, (2) the size of the headline database and (3) the size of the set of
user-approved context words.

We describe these three steps in more detail and provide an example below.
Figure 5.4 shows an example which features both a situational description and
some lines of NPC text. The rest of this paper will feature examples that were
generated with this input text.

5.3.3 Keyword extractor

The start of the pipeline is the keyword extractor. We assume that the input
text consists of grammatical sentences, so that it can be parsed by a sentence
tokenizer and a dependency parser.

5

90 | Chapter 5

The keyword extractor runs the input text through the NLTK sentence tok-
enizer2 and the spaCy3 part-of-speech-tagger and dependency parser trained on
spaCy’s default corpus4 for English. It uses spaCy’s noun phrase extraction to ex-
tract all English noun phrases from the input text. The keyword extractor saves
all noun phrases that occur in the input text, together with the head of each noun
phrase. Churnalist uses the head nouns as seed words and saves the noun phrase
itself so it can be reused later, during the word substitution phase. See Figure 5.5
for an example of seed words and the corresponding noun phrases as extracted
from the input text in Figure 5.4.

5.3.4 Knowledge base

In order to get more variety in our output, and not limit the words used in our
output to nouns extracted from the input text, we extend the list of seed words
with related words. Note that we mean ‘semantically related’ in a broader sense
than ‘similar semantics’ or even ‘synonyms’. Semantically similar means that
two words are close in meaning, or that they can be used in the same semantic
context. Semantic relatedness indicated any type of relationship between words
[15]. The word ‘car’ might be semantically similar to ‘bus’ and ‘bike’, but is se-
mantically related to the words ‘road’, ‘driving’, ‘steering wheel’ and ‘mechanic’,
all of which are not semantically similar to ‘car’.

To obtain related words, Churnalist queries the knowledge base for words
similar to the seed words. We took this idea from the procedurally generated
biographies in Caves of Qud [119], which evoked a feeling of coherence because
of the related domain words that were put into biography. For example, for the
seed word ‘ice’ the words ‘lightblue’, ‘frost’, ‘cold’ or ‘winter’ would all be suitable
related words. The word lists for the various domains in Caves of Qud were
written manually by the game developers. However, we do not want to build
large content-models by hand. Instead, we want to focus on generating text
from data that can be obtained automatically. We explored two data sources as
knowledge base: pretrained word embeddings (FastText) and a knowledge graph
(ConceptNet). The advantages and disadvantages of each option are discussed
below.

The set of seed words together with the set of related words from the knowl-
edge base forms the set of context words. Figure 5.7 shows the final set of context
words for the seed words from Figure 5.5.

Word embeddings as knowledge base

In the first version of Churnalist, we used the English dataset of FastText’s pre-
trained word embeddings [42] as a knowledge base, similar to the external se-

2NLTK 3.3, https://www.nltk.org
3spaCy 2.0.16, https://www.spacy.io
4Language model en_core_web_sm 2.0.0

5

Generating flavor text headlines | 91

Head noun Noun phrase

administrator system administrator
company hosting company, company
network computer network
CEO CEO
emails anonymous emails
documents sensitive company documents
manager manager
property important intellectual property
hackers hackers
IOCs relevant IOCs
analysis forensical analysis
officer Security officer
traces traces
malware active malware
server Windows server
files network log files
activity malicious activity

Figure 5.5: Noun phrases and their head noun extracted from the input text from Figure
5.4. Some phrases have a high probability of creating malformed outputs, for
example because they are unsuitable for forming a headline’s object or subject.
These phrases, e.g. ‘days’, ‘o’clock’ and ‘afternoon’, were filtered out manually.

mantic datasets used by the PoeTryMe framework [116].
Word embeddings are a method for encoding words as their context, based

on a corpus. The FastText dataset is based on a corpus of Wikipedia articles. It
contains words represented as vectors that encode the context of these words.
Words (vectors) that are close to each other in the resulting vector space, are
words that occur in similar contexts.

The FastText dataset contains word embeddings that encode subword infor-
mation: the vector of a word is created from the vectors of its subwords of
length n. As a consequence, the dataset can be used to obtain vectors for out-
of-vocabulary words: we only need to create a vector for them by looking at the
vectors of their subwords. This allows us to deal with words that are not present
in the semantic resources being used. Consequently, we bypass a problem similar
to O Poeta Artificial’s out-of-vocabulary hashtags [115].

The knowledge base tries to assign a vector to each extracted seedword and
find its closest neighbours. If the seed word is an out-of-vocabulary word, the
system calculates a new vector for the word based on the word embeddings of
its subwords, and uses this new vector to find related words. The user can set
a minimum distance for suggestions from the knowledge base and select which
suggested words should be passed on to the substitution step. For an example of

5

92 | Chapter 5

Word Distance

companiess 0.7817
subsidiary 0.6847
telecompany 0.6821
companywide 0.6773
ecompany 0.6668
webcompany 0.6496
corporation 0.6315
firm 0.6218

Figure 5.6: Suggested similar words from the FastText knowledge base for seed word ‘com-
pany’, and their distance to the seed word in descending order. Not all sugges-
tions by the knowledge base are shown.

the results of the knowledge base, see Figure 5.6.
Since FastText was trained on Wikipedia dumps, there are words in the model

that are unsuitable for inclusion in Churnalist’s output, such as words with crowd-
sourced typographical errors. For example, the words closest to ‘company’ are
‘companiess’, ‘companythe’ and ‘companyx’, which result from typographical er-
rors (and possibly pre-processing errors) in the Wikipedia dataset. Additionally,
some words are very similar to one of the seed words but have no connection
to the way that seed word is used in the input text. Take the compound noun
‘security officer’, which means someone who defines and enforces the informa-
tion security policy in a company. Its head noun is ‘officer’, for which FastText
will list ‘sergeant’, ‘quartermaster’ and ‘sublieutenant’ as related words. However,
these words have little connection with the term ‘security officer’ and should not
be used in the output. The user of Churnalist should filter the suggestions for
related words from the knowledge base.

The FastText word embeddings had a few caveats, the most important be-
ing that the vector space contained many misspellings of common words, which
would then come up as ’closely related’ to seed words in the input text. As a re-
sult, the user of Churnalist would have to manually exclude all these misspellings
from the list of context words, or use a spellchecker to filter out misspelled word
automatically. Furthermore, the pre-trained FastText word embeddings are quite
large, a few gigabytes per language, which makes Churnalist harder to deploy.

Knowledge graph as knowledge base

In the second version of Churnalist, we used ConceptNet [246] as source of re-
lated words. ConceptNet is a multilingual knowledge graph that represents re-
lations between words and phrases. ConceptNet was originally created by Liu
and Singh [172] as a parsed representation of Open Mind Common Sense, a
crowd-sourced knowledge project. ConceptNet is a graph that represents rela-

5

Generating flavor text headlines | 93

Seed word Approved suggestions Rejected suggestions

administrator - administratorship, admininistrator

company subsidiary, webcom-
pany

companiess, companythe, compa-
nynew

CEO executive, share-
holder, entrepreneur

CFO, chairman, COO, CTO

network - networky, networkx, networknbc

emails - emailings, voicemails, emailers

documents documentation,
memos, archives

documentations, documen, documen-
tries

manager teammanager managership, imanager, managerin

property - poperty, propert, propertyless

hackers hacktivists, cyber-
criminals, scammers

hackings, blizzhackers, hackery

IOCs - ligtvoet, zeijst, lennaert

analysis - analyses, analysises, analysist

officer - underofficer, officerer, commander

malware spamware, botnet,
vulnerabilities

spyware, malwarebytes, antivirus

server - iserver, vserver, pvserver

files folders, fileserver fileset, filesmy, filespace

activity - activitiy, activitism, activin, reactivi-
ties

Figure 5.7: Seed words and examples of knowledge base suggestions for related words.
Not all words suggested by the knowledge base are shown. The results were
approved and rejected manually by the author. Words in the ‘approved’ column
are added to the set of context words.

tions between words and phrases in various languages. The words and phrases
form the nodes of the graphs, whereas the labelled and weighted edges repre-
sent assertions. Examples of assertions are IsA (a hacker is a person), PartOf (a
wheel is part of a car), UsedFor (a keyboard is used for typing). Figure 5.8 shows
ConceptNet’s knowledge about the word ‘hacker’. The graph contains transla-
tions (hakkeri), synonyms (black hat), hypernyms (person) and hyponyms (bot
herder), and related words (dox). Besides relations between words, ConceptNet
also represents links between knowledge resources. Besides its own knowledge

5

94 | Chapter 5

Figure 5.8: ConceptNet’s browsable interface (conceptnet.io) shows facts about the English
word “hacker”.

about words, it might contain links to related resources, such as pages on Word-
Net, Wiktionary, OpenCyc, and DBPedia.

In contrast to other lexical resources, such as Cyc, DBPedia, and The Google
Knowledge Graph, ConceptNet does not focus on named entities, but on the
common-sense meaning of words. ConceptNet is free and accessible. In contrast
to the FastText word embeddings, ConceptNet can be accessed online. A simple
HTTP request to the ConceptNet API suffices to obtain a list of related words.
This is also its weakness: using ConceptNet requires an Internet connection, so
the prototype no longer works in an offline environment.

In the research paper describing ConceptNet 5.5 [246], the authors show that
ConceptNet can also be combined with distributional semantics to create a new
semantic space: ConceptNet Numberbatch. This hybrid semantic space performs
better than any existing systems on word relatedness. However, Churnalist uses
ConceptNet as a standalone resource.

Depending on the situation, either FastText or ConceptNet is the appropriate
choice as knowledge base for Churnalist. FastText requires more storage space,
but once downloaded, the data is local. Loading the model and computing the
distance between a seed word and words in the vector space can be computa-
tionally costly. ConceptNet does not take up any storage space, but requires an
internet connection. Both resources support multiple languages. ConceptNet
can switch between languages instantaneously, whereas FastText would require
downloading an additional model for every new language.

5

Generating flavor text headlines | 95

5.3.5 Substitution module

The substitution module receives the list of context words from the knowledge
base module and produces new headlines that contain one or more context
words. It creates new headlines by substituting the subject of an existing head-
line from the headline database. This approach is similar to that of Headylines
[104], which inserts keywords from a newspaper article into existing sentences.

The substitution module starts by picking a random headline from the head-
line database. This headline is used as the starting point for one new head-
line. The headline is run through spaCy’s part-of-speech-tagger and dependency
parser, trained on spaCy’s default English corpus. From the information of the
parser, Churnalist tries to find the subject of the sentence. This is the substitu-
tion target. If the parser cannot determine what the subject of the sentence is, a
different headline is drawn randomly from the headline database.

Next, Churnalist chooses a random seed word. Each seed word has a set of
context words associated with it: the seed word itself, noun phrases from the in-
put, and the user-approved related words from the knowledge base. Churnalist
randomly chooses one of these as a substitution candidate. If the substitution
target is of a different number than the substitution candidate, Churnalist con-
verts the candidate to the right number (singular to plural or vice versa). Finally,
the target is substituted by the candidate and the new headline is presented to
the user.

Headlines from News API

In the first version of Churnalist, the external dataset of headlines consisted of
headlines scraped with the API from News API.5 This API returns headlines and
article excerpts from several large news websites. We collected 3629 headlines
from media from the UK and the US in December 2018 and January 2019.

In practice, the headlines scraped from NewsAPI are suboptimal as source
data for word substitution. They are not formatted consistently, and might con-
tain special characters, which makes them difficult to parse with SpaCy. We also
noticed that many articles have ‘clickbait’ titles that do not contain many content
words, which means we do not have many content words to use in word substitu-
tion. And many of the scraped headlines contain references to the publication in
which they originally appeared. We do not want to generate fictional headlines
with references to real-world publications.

Headlines from GigaWord

To mitigate the issues with our scraped headlines, the second version of Churnalist
uses the headlines present in the annotated Gigaword corpus [194]. Anno-

5News API, https://newsapi.org

5

96 | Chapter 5

tated Gigaword consists of English Gigaword6, extended with tokenized and seg-
mented sentences, Treebank-style constituent parse trees, syntactic dependency
trees, named entities, and in-document coreference chains. We extracted the
headlines, without the annotations. Since Gigaword is sourced from interna-
tional newswire organisations, such as Bloomberg and the New York Times, the
quality of the data is much higher than headlines from News API. The size of
the corpus is considerably larger as well. Even if we filter out all headlines with
non-alphanumerical characters, to make dependency parsing as easy as possible
for spaCy, we are left with over 1.5 million headlines.

5.4 Text generation with Churnalist

5.4.1 Outputs

Figure 5.9 shows examples of generated headlines, together with the original
headline and seed word.

According to the requirements from Section 5.3.1, generated headlines should
have an appropriate form, should be grammatical and should be context-appropriate
for the input text.

Firstly, applying text modification to the headlines will lead to texts that again
look like headlines. Informal inspection of the headlines generated suggests that
this requirement is fulfilled sufficiently.

The headlines are often grammatical, but not always. In some cases, the
dependency parser has trouble selecting the full noun phrase in both the input
text and headlines from the headline database, which leads to only partially
substituted objects and subjects. Since Churnalist is meant for supporting game
writers, we rely on the user to filter and discard ungrammatical output. Although
we would like to improve the quality of the output to reduce the effort for game
writers even more, we do not consider this a problem.

Since seed words and headlines are selected and matched at random, many of
the generated headlines would probably not yet be considered context-appropriate.
For example, readers might not relate headlines mentioning ‘company docu-
ments’ to the stolen company documents from the game text.

Some seed words have a stronger connection to the story and will evoke a
stronger sense of coherence than others. For example, we expect that headlines
that mention ‘hackers’ will have a stronger link for the reader with the story
than headlines that mention ‘managers’. Most companies have managers; few
companies have problems with malicious attacks from hackers. We expect that
incorporating a stronger filter for seed words will lead to headlines with stronger
link to the game story from the input text. For example, we could rank seed
words based on their term frequency-inverse document frequence (tf-idf). This

6English Gigaword Fifth Edition by Linguistic Data Consortium, https://catalog.ldc.upenn.ed
u/LDC2011T07

5

Generating flavor text headlines | 97

Seedword system administrator
Headline Revealed: £500k number plate conman is a convicted people

smuggler
Output Revealed: system administrator is a convicted people smuggler

Seedword hosting company
Headline Pelosi has edge over Trump on budget negotiations, CBS News poll

shows
Output Hosting company has edge over Trump on budget negotiations,

CBS News poll shows

Seedword computer network
Headline Met Office issues ice warning as snow hits UK
Output Computer network issues ice warning as snow hits UK

Seedword hacker
Headline Uber loses latest legal bid over driver rights
Output Hacker loses latest legal bid over driver rights

Seedword sensitive company documents
Headline Investigators revise cause of escape room fire that killed 5 girls
Output Sensitive company documents revise cause of escape room fire that

killed 5 girls

Seedword forensical analysis
Headline MPs’ threat to block government’s tax without second brexit refer-

endum
Output MPs’ threat to block forensical analysis without second brexit ref-

erendum

Figure 5.9: Generated headlines for the input text in Figure 5.4.

would take into account that seed words that occur frequently in general are
probably less representative for the input text than seed words that occur rarely
in other English texts. For now, we leave the task of filtering the seed words and
generated headlines to the user of Churnalist.

Choosing a random headline from the database for substitution is a mixed
blessing. On the one hand, combining a context word with the randomized head-
line can lead to surprising and creative outputs. On the other hand, sometimes
the link with the context word that was chosen for substitution is far-fetched or
even downright ridiculous.

The application domain of Churnalist is supporting game writers in their cre-
ative task. Since Churnalist requires no linguistic knowledge, it is an accessible
tool. Instead of relying on hand-written linguistic models, it requires external
datasets for its text modification functionality. By using News API for collecting
headlines and using FastText or ConceptNet as knowledge base, Churnalist can
run fully on publicly available data. Similarly to PoeTryMe, users could choose to

5

98 | Chapter 5

use different datasets for their particular application, for example for a different
language than English.

However, using external data for NLG has some caveats. Reusing headlines
has as advantage that we do not have to write templates. The disadvantage is
that quality of the output headlines will never be better than the quality of the
headlines from the headline database. Using headlines from low-quality news
outlets with click-bait headlines, the output headlines will show similar clickbait
properties.

We developed Churnalist with open source libraries such as NLTK and spaCy.
This has a few drawbacks. As long as we want to generate headlines in English,
there are enough English language resources available. However, were we to
generate text for a different language (such as Dutch), we have fewer options
in programming libraries for processing natural language. For example, NLTK’s
noun phrase extractor is not implemented for the Dutch language.

5.4.2 Improvements

There are various ways to improve Churnalist as a tool.
Firstly, we can improve parts of the implementation, by using better and more

appropriate tools and resources. We used an open source dependency parser for
Churnalist that was trained on a standard corpus of English. Training the parser
on a set of headlines could improve the accuracy of the parser, which might lead
to better quality text modifications.

We could also expand Churnalist’s approach to generation. Churnalist could
use a generate-and-test strategy, like PoeTryMe, where multiple candidate head-
lines are generated and a fitness function determines the best candidate headline
from this set as output. Instead of applying text modification to randomly cho-
sen headlines, Churnalist could scan existing headlines for content words that
already show a strong link with the input text, for example using a database
of n-grams, and use these as a basis for modification. We could use sentiment
analysis to filter out too negative headlines, or use a blacklist of words that rep-
resent sensitive topics (e.g. war, rape, suicide). Finally, Churnalist could extract
names from the input text (such as “SuperSecure ltd” from our examples) and
incorporate these in the headlines as well. Applying named entity recognition
techniques on the input text would be a step in this direction.

5.5 Evaluation

We evaluated Churnalist via research platform Appen (previously Figure Eight,
Crowdflower), using the same evaluation method as Veale [276], Alnajjar, Lep-
pänen, Toivonen, et al. [4] and Gatti et al. [104].

We evaluated two aspects of Churnalist’s outputs, in two experiments:

1. Form: Does Churnalist produce acceptable quality headlines?

5

Generating flavor text headlines | 99

2. Function: Does Churnalist produce headlines that are perceived as appro-
priate to the context?

We will discuss the first experiment ‘Form’ in Section 5.5.1, and the second
experiment ‘Function’ in Section 5.5.2. The evaluation took place via an on-
line survey in which participants were asked to rate each headline on a series
of statements. To make sure the survey was not too long, and to compute a
fair compensation for research participants, we tested a pen & paper version of
the survey before starting each experiment. In both experiments, the order of
presented texts was randomized for each participant to reduce order bias in our
results. We obtained permission from the Ethics Committee of the faculty of
EEMCS at the University of Twente prior to starting the experiments.

5.5.1 Form

The first evaluation experiment measures whether Churnalist generates plausible
headlines. Does Churnalist’s text modification create acceptable quality head-
lines, or does it make human-written headlines worse?

The first experiment was conducted in December 2019, on crowdsource plat-
form Figure Eight (later acquired by Appen). Participants were shown batches of
10 texts. Each participant could rate as many batches of 10 texts as they wished.
The batches were a random sample of the following collection of 144 texts:

• 48 human written headlines, sourced from Gigaword

• 48 Churnalist headlines

• 48 human-written sentences from the body of newspaper articles, sourced
from Gigaword

The texts were presented without any context.
Churnalist’s input was taken from four New York Times newpapers articles

published in 2010. We used newspaper articles as input for Churnalist instead
of text from video games, because these headlines were just used to compare
Churnalist output text with human-written headlines. We chose older articles,
so that when readers were reading and interpreting the texts, they would not
be not biased by their knowledge of recent events. We used Churnalist as a
(game) writer would: as an authoring aid where the user can influence every
step in the generation process. Churnalist’s demo interface generates batches of
40 headlines. We generated one batch per NYT news article and we cherrypicked
the best outputs until we had a total of 48 headlines.

We used 48 randomly picked GigaWord headlines as gold standard of head-
line quality. We also picked 48 random prose sentences (not headlines) from the
New York Times articles as baseline.

We asked participants to rate each text on a 5-point Likert scale, using the
following statements (Likert items):

5

100 | Chapter 5

1. This text looks like a headline

2. This text makes sense

3. This text is grammatically and syntactically correct

4. I think this text was written by a computer

In the following section, we will use the term headline-ness when referring
to the property measured by Statement 1; sense for the property measured by
Statement 2; grammaticality for the property measured by Statement 3; and
computer-generated for the property measured with Statement 4.

We collected 2-5 judgements per text from 167 participants. On platform
Figure Eight, participants can choose how many batches of 10 texts they want to
rate. Each participant rated between 10 and 50 texts. Participants were paid 60
dollar cents for rating one batch.

To check whether our participants were proficient enough in English to prop-
erly rate the language quality of the texts, we also included a set of validation
headlines in our experiment, all of which contained grammatical and spelling er-
rors. Each participant rated these validation headlines prior to rating the normal
evaluation texts. If they rated the validation headlines as highly grammatical, we
excluded their ratings from our results.

Results for evaluation of headline form

Since we used a Likert scale, participant ratings are discrete. Statistically analysing
Likert scales is problematic because of their discrete nature, and participants
might differ in their interpretation of Likert scale items. How to interpret Lik-
ert scale results has been an object of discussion in various fields since 1940.
However, we will follow the common methodology in NLG research. We assume
that our Likert scale values are equally spaced ordinal values, e.g. we will treat
the space between “Strongly disagree” and “Agree” equally as the space between
“Agree” and “Neutral”.

We used the Shapiro-Wilk normality test to determine whether our ratings
are normally distributed. The results of this test determine whether we can
use parametric statistical tests like ANOVA. Figure 5.10 shows the results of the
Shapiro-Wilk normality test. The ratings for all four properties are significantly
non-normal.

Figure 5.11 and Figure 5.12 visualize the ratings for the four evaluation prop-
erties. The boxplots in Figure 5.11 confirm that our ratings are not normally
distributed.

Since our data is not normally distributed, this means the prerequisites for
using parametric tests are not fulfilled. We use a non-parametric test to find
differences between the three systems. We applied a Kruskal-Wallis rank sum
test for each of the four evaluation properties. The Kruskal-Wallis test H ranks

5

Generating flavor text headlines | 101

Property W p Significance

Grammaticality 0.81807 < 2.2e− 16 *
Sense 0.79565 < 2.2e− 16 *
Headline-ness 0.77484 < 2.2e− 16 *
Computer-generated 0.78445 < 2.2e− 16 *

Figure 5.10: Results of the Shapiro-Wilk test on the ratings for four evaluation properties
grammaticality, sense, headline-ness and computer-generated for all evalua-
tion texts. The ratings for all four properties are significantly non-normal.

Figure 5.11: Box plots for the ratings of headline-ness, sense, grammaticality and likelihood
that the text is computer-generated. Texts were rated on a 5-point Likert scale,
with 1 “Strongly disagree” to 5 “Strongly agree”. The triangle marks the mean.

5

102 | Chapter 5

Grammaticality

Percent

Te
xt

 o
rig

in

To
ta

l r
at

in
gs

 c
ol

le
ct

ed

churnalist

gigaword_headline

newspaper_sentences

40 20 0 20 40 60 80

240

178

203

Sense

Percent

Te
xt

 o
rig

in

To
ta

l r
at

in
gs

 c
ol

le
ct

ed

churnalist

gigaword_headline

newspaper_sentences

40 20 0 20 40 60 80

240

178

203

Headline−ness

Percent

Te
xt

 o
rig

in

To
ta

l r
at

in
gs

 c
ol

le
ct

ed

newspaper_sentences

churnalist

gigaword_headline

60 40 20 0 20 40 60

203

240

178

Computer−generated

Percent

Te
xt

 o
rig

in

To
ta

l r
at

in
gs

 c
ol

le
ct

ed
newspaper_sentences

churnalist

gigaword_headline

60 40 20 0 20 40

203

240

178

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.12: Diverging stacked bar charts for the ratings of headline-ness, sense, grammat-
icality and likelihood that the text is computer-generated.

all the ratings, and computes the mean rank for each of our three systems. We
collected a total of 621 ratings, so the rank is a number between 1 and 621.
Figure 5.13 reports the results of this test, and the mean rank for each system.
The test results show that for each property significant differences exist between
the systems.

To investigate the differences between the three systems, we do focused post-
hoc tests using multiple comparison test after Kruskal-Wallis in R. In our post-
hoc tests, we compared the mean rank of Churnalist to the mean rank of the
two other systems using a two-tailed test. Figure 5.14 shows the results of the
post-hoc tests.

5

Generating flavor text headlines | 103

Pr
op

er
ty

H
(2
)

p
M

ea
n

ra
nk

M
ea

n
ra

nk
M

ea
n

ra
nk

Si
gn

ifi
ca

nt
C

hu
rn

al
is

t
G

ig
aw

or
d

se
nt

en
ce

s
(p

<
0.
01
)

Se
ns

e
8.

65
64

0.
01

31
9

28
6.

00
42

32
2.

71
63

33
0.

27
83

*
G

ra
m

m
at

ic
al

it
y

11
.5

82
0.

00
30

55
28

1.
93

54
32

4.
21

35
33

3.
77

59
*

H
ea

dl
in

e-
ne

ss
35

.0
63

2.
43

3e
-0

8
33

5.
38

54
34

4.
30

34
25

2.
96

8
*

C
om

pu
te

r-
ge

ne
ra

te
d

23
.5

94
7.

52
9e

-0
6

28
5.

72
71

36
1.

60
11

29
6.

50
99

*

Fi
gu

re
5.

13
:

K
ru

sk
al

-W
al

lis
ra

nk
su

m
te

st
fo

re
ac

h
of

th
e

fo
ur

ev
al

ua
tio

n
pr

op
er

tie
s.

5

104 | Chapter 5

Property
System

s
O

bserved
C

ritical
Significant

difference
difference

(p
<

0.05)

Sense
C

hurnalist
vs

G
igaw

ord
36.71213

39.77799
C

hurnalist
vs

sentences
44.27416

38.34586
*

G
ram

m
aticality

C
hurnalist

vs
G

igaw
ord

42.27807
39.77799

*
C

hurnalist
vs

sentences
51.84045

38.34586
*

H
eadline-ness

C
hurnalist

vs
G

igaw
ord

8.917954
39.77799

C
hurnalist

vs
sentences

82.417436
38.34586

*

C
om

puter-generated
C

hurnalist
vs

G
igaw

ord
75.87404

39.77799
*

C
hurnalist

vs
sentences

10.78277
38.34586

Figure
5.14:

Tw
o-tailed

m
ultiple

com
parison

testafterK
ruskal-W

allis.
W

e
com

pared
C

hurnalistw
ith

G
igaw

ord
and

sentences
on

allfourproperties.

5

Generating flavor text headlines | 105

From the post-hoc tests, we can conclude that participants rated Churnalist
not significantly different from Gigaword on the property of sense. If we look at
the rating visualization and the mean rank, participants thought the sentences
made the most sense, and the Gigaword and Churnalist headlines less so.

In terms of grammaticality, Churnalist is rated significantly different from
both Gigaword and newspaper sentences. This affirms the problems we noticed
in Churnalist’s output, most of which are caused by Churnalist’s random substi-
tution.

Churnalist is not significally different from Gigaword headlines in terms of
headline-ness, which is good news. The difference between Churnalist and news-
paper sentences is statistically significant. From this we can conclude that read-
ers think that Churnalist’s output are clearly headlines and not regular prose
sentences.

The results for the computer-generated property are surprising. From the
post-hoc tests, we can conclude that Churnalist differs significantly from Giga-
word on this property, but not from sentences. If we look at the mean rank
for this property, it turns out that participants thought it most likely that Giga-
word headlines were generated by a computer. The bar charts from Figure 5.12
paint a more nuanced picture. Participants often rated Gigaword ‘neutral’ on
this property, whereas they were divided on whether Churnalist’s outputs were
computer-generated. Participants chose the two extremes, i.e. “strongly dis-
agree” and “strongly agree”. more often than ‘neutral’ for Churnalist headlines,
which leads to a lower mean rank on the computer-generated property.

5.5.2 Function of output

In the second evaluation experiment, we wanted to find out whether Churnalist
generates headlines that fit the input context. With a survey, we tried to mea-
sure whether readers interpret generated headlines as context-appropriate (and
plausibly coherent) for a given video game.

We used Prolific7 to recruit 50 participants for this experiment. We specifically
recruited adult participants with a good proficiency of the English language. Par-
ticipants received £2.80 for participating in the study. The survey took 5–20
minutes to complete. We used Google Forms to create the survey and collect the
data. Instead of rating texts in batches, as in experiment 1, the survey for ex-
periment 2 contained all questions and headlines. As a result, every participant
rated every headline on every property.

The survey consists of three parts, and each part of the survey is about one
real-world video game. We chose three games of different gentres that contain
news headlines: CookieClicker [267], a browser-based idle game; Deux Ex: Hu-
man Revolution [92], a science fiction action game; and SimCity 3000 [183], a
city-building game. In the survey, each game is introduced with a title, a one-

7Prolific, https://www.prolific.co

5

106 | Chapter 5

CookieClicker

CookieClicker is an browser-based idle game in which the player takes the role of a
cookie magnate. By employing an army of cookie-baking grandmothers, building cookie-
producing factories and farming chocolate, the player can become the number one
cookie-producer in the world!

Deus Ex: Human Revolution

Science fiction role-playing game Deus Ex: Human Revolution is set in 2027, just as hu-
man augmentation begins to enter mainstream life. Augmentation, the use of cybernetics
in order to improve or replace human body parts, allows people to assume superhuman
abilities, albeit not without limitations. Players take the role of Adam Jensen, a security
consultant employed by biotechnology company Sarif Industries to protect a research lab
in Detroit.

SimCity 3000

In city-building game SimCity3000 , the player takes on the role of a mayor. The ob-
jective of the game is to create a city, develop residential and industrial areas, build
infrastructure and collect taxes for further development of the city. Importance is put
on increasing the standard of living of the population, maintaining a balance between
the different sectors, and monitoring the region’s environmental situation to prevent the
settlement from declining and going bankrupt.

Figure 5.15: Game descriptions for three video games with headlines. These descriptions
were used as context in the survey, and as input for Churnalist to create new
flavor headlines for these games.

paragraph description and one or more images. This information should help
survey participants understand the game, even if they are not familiar with it.
We used short descriptions of the three games, paraphrased from their Wikipedia
entries, to contextualize the headlines in the online survey. Figure 5.15 lists the
three game descriptions. The descriptions also functioned as the input text for
Churnalist, to create generated headlines.

We use four categories of headlines for this experiment.

1. original headlines from the game, as our gold standard;

2. randomly chosen headlines from Gigaword, as our baseline;

3. headlines from Gigaword that contain at least one seed words, and

4. outputs from Churnalist.

Since CookieClicker is a client-based JavaScript game, CookieClicker’s head-
lines can be extracted directly from the game’s source code. Headlines from
SimCity 3000 and Deus Ex: Human Revolution were downloaded from fan web-
sites. Outputs from Churnalist were generated using the title and descriptive

5

Generating flavor text headlines | 107

CookieClicker

From game Cookie factories linked to global warming
Gigaword random Clinton takes aim at budget today
Gigaword with seedword Girl Scouts witness how the cookie crumbles
Churnalist European Commission criticizes cookie magnate on waste

crisis

Deus Ex: Human Revolution

From game 500 augmented workers head to Panchaea as Arctic
Ocean Installation breaks new scientific ground

Gigaword random Beijing private cars triple in five years
Gigaword with seedword Witness in Detroit case denies any terror ties
Churnalist Syrian Foreign Minister to visit augmented human

SimCity 3000

From game City Tourist Bureau Launches City Beautification Project
Gigaword random Indonesia to Commemorate Global Hand Washing Day
Gigaword with seedword Sharks Hire Sims as Coach
Churnalist Sacked Minister Accuses Municipality of Accepting Favors

Figure 5.16: Example headlines for each game and every headline category: original head-
lines from the game (gold standard), randomly chosen headlines from Giga-
word (baseline), headlines from Gigaword that contain at least one seed word,
and outputs from Churnalist.

paragraphs from Figure 5.15 as input. Headlines from Gigaword were randomly
picked using a Python script.

The four headline categories differ on three properties. Firstly, the first three
categories are hand-written, whereas Churnalist outputs are generated. We can
use this distinction to measure the difference between human-written and computer-
generated headlines. Secondly, Gigaword with seed words and Churnalist con-
tain seed words as reference to the input text, whereas the headlines in the ran-
dom Gigaword category explicitly do not contain any of the words that occurred
in the input text. We can use this difference to measure the difference between
headlines with and without seed words. Headlines from the original game are
a mixed bag for this category: 4 out of 5 original SimCity headlines, 4 out of 5
Deus Ex headlines and 3 out of 5 headlines of CookieClicker contain seed words.
Finally, we included headlines from the original game as a gold standard. We can
use this to measure differences in ratings between the headlines from the origi-
nal game, and the other three categories. Figure 5.16 shows example headlines
for each game and headline category.

Each headline was scored on a 5-point Likert scale on the following two state-
ments:

1. This headline is meaningful given the game’s description.

5

108 | Chapter 5

2. It is plausible that this headline is part of the game.

Our initial survey contained a third statement, namely ‘This headline fits the
described game’. However, a pen and paper test round indicated that this con-
fused participants, as Statement 2 and Statement 3 were interpreted as too sim-
ilar.

In the following section, we will use the term meaningfulness when referring
to the property measured by Statement 1, and part of game for the property
measured by Statement 2.

Each part of the survey corresponds to one game, and for each game, par-
ticipants rate 5 headlines of each type on two different properties. In total, the
survey contained 3 games x 4 headline types x 5 headlines x 2 properties = 120
ratings.

Results for evaluation of headline function

Figure 5.17 visualizes the Likert ratings we collected for the statements "This
headline is meaningful given the game’s description” and “It is plausible that
this headline is part of the game.” We collected a total of 3060 headline ratings
per property from 51 participants, with 60 ratings per participant. From the
barcharts, we can see that the differences between Gigaword with seed words,
Churnalist, and the original game texts are negligible, and that random Gigaword
headlines score much worse than the former three categories, on both properties.

As was the case with the first evaluation experiments, both the ratings for
meaningfulness, W = 0.83381, p < 2.2e − 16, and part of game, W = 0.83859,
p < 2.2e − 16, were significantly non-normal. As the ratings are not normally
distributed, we again used a non-parametric Kruskal-Wallis rank sum test to de-
termine where the differences are in our results.

The Kruskal-Wallis test H ranks all the ratings, and computes the mean rank
for each of our four headline types. Since we collected a total of 3060 ratings
per property, the rank is a number between 1 and 3060. Figure 5.18 reports the
results of this test, and the mean rank for each system. The test results show that
for both properties significant differences exist between the four systems.

To investigate the differences between Churnalist headlines and the other
three headline types, we did focused post-hoc tests using a multiple comparison
test after Kruskal-Wallis. In our post-hoc tests, we compared the mean rank of
Churnalist to the mean rank of the three other systems using a two-tailed test.
Figure 5.19 shows the results of the post-hoc tests.

From the post-hoc tests, we can conclude that participants rated Churnalist as
significantly different from the random Gigaword headlines on both properties.
The ratings for Churnalist’s outputs do not differ significantly from the ratings of
original game texts, which is our gold standard, or Gigaword headlines with seed
words. The bar charts in Figure 5.17 subscribe these findings. In the chart, we

5

Generating flavor text headlines | 109

M
ea

ni
ng

fu
ln

es
s

P
er

ce
nt

Text origin

Total ratings collected

gi
ga

w
or

d_
ne

ut
ra

l

gi
ga

w
or

d_
se

ed
w

or
d

ga
m

e

ch
ur

na
lis

t

50
0

50

76
5

76
5

76
5

76
5

P
ar

t o
f g

am
e

P
er

ce
nt

Text origin

Total ratings collected

gi
ga

w
or

d_
ne

ut
ra

l

ch
ur

na
lis

t

ga
m

e

gi
ga

w
or

d_
se

ed
w

or
d

50
0

50

76
5

76
5

76
5

76
5

S
tr

on
gl

y.
di

sa
gr

ee
D

is
ag

re
e

N
eu

tr
al

A
gr

ee
S

tr
on

gl
y.

ag
re

e

Fi
gu

re
5.

17
:

D
iv

er
gi

ng
st

ac
ke

d
ba

r
ch

ar
ts

fo
r

th
e

ra
tin

gs
of

m
ea

ni
ng

fu
ln

es
s

an
d

pa
rt

of
ga

m
e.

R
es

ul
ts

fo
r

al
lt

hr
ee

ga
m

es
(C

oo
ki

eC
lic

ke
r,

D
eu

s
E

x
an

d
S

im
C

ity
)w

er
e

co
m

bi
ne

d.

5

110 | Chapter 5

Property
H
(3)

p
M

ean
rank

M
ean

rank
M

ean
rank

M
ean

rank
Significant

C
hurnalist

G
am

e
G

igaw
ord

G
igaw

ord
(p

<
0.001)

seed
w

ords
neutral

M
eaningfulness

440.63
<

2.2e−
16

1733.761
1704.261

1711.044
972.934

*
Part

ofgam
e

564.48
<

2.2e−
16

1704.839
1742.441

1777.108
897.6124

*

Figure
5.18:

K
ruskal-W

allis
rank

sum
testforeach

ofthe
tw

o
evaluation

properties.

5

Generating flavor text headlines | 111

Pr
op

er
ty

Sy
st

em
s

O
bs

er
ve

d
C

ri
ti

ca
l

Si
gn

ifi
ca

nt
di

ff
er

en
ce

di
ff

er
en

ce
(p

<
0.
05

)

M
ea

ni
ng

fu
ln

es
s

C
hu

rn
al

is
t

vs
ga

m
e

29
.5

00
00

10
8.

14
5

C
hu

rn
al

is
t

vs
G

ig
aw

or
d

w
it

h
se

ed
w

or
ds

22
.7

16
34

10
8.

14
5

C
hu

rn
al

is
t

vs
ra

nd
om

G
ig

aw
or

d
76

0.
82

68
0

10
8.

14
5

*

Pa
rt

of
ga

m
e

C
hu

rn
al

is
t

vs
ga

m
e

37
.6

01
96

10
8.

14
5

C
hu

rn
al

is
t

vs
G

ig
aw

or
d

w
it

h
se

ed
w

or
ds

72
.2

69
93

10
8.

14
5

C
hu

rn
al

is
t

vs
ra

nd
om

G
ig

aw
or

d
80

7.
22

61
4

10
8.

14
5

*

Fi
gu

re
5.

19
:

Tw
o-

ta
ile

d
m

ul
tip

le
co

m
pa

ris
on

te
st

af
te

r
K

ru
sk

al
-W

al
lis

.
W

e
co

m
pa

re
d

C
hu

rn
al

is
t

w
ith

th
e

or
ig

in
al

ga
m

e
te

xt
s,

G
ig

aw
or

d
w

ith
se

ed
w

or
ds

an
d

ra
nd

om
G

ig
aw

or
d

on
bo

th
pr

op
er

tie
s.

5

112 | Chapter 5

can see that the differences between the three highest rated categories are very
small compared to the ratings for Gigaword neutral.

The differences between Churnalist, original game headlines, and Gigaword
with seed words for the statement ‘this headline is meaningful given the game’s
description’ are minimal. This is interesting, because it implies that participants
rate a headline as meaningful if it reuses words from the game description. The
lack of a significant difference between Churnalist and Gigaword headlines with
seed words implies that we could just as well use Gigaword headlines as source of
inspiration for game writers, instead of creating new headlines using Churnalist.
Of course this leads to problems with copyright, as we can’t just blindly insert
headlines from published news paper articles in a role-playing game. Note that
we can only use unmodified Gigaword headlines if the game narrative does not
contain too many made-up words. This was a challenge in the case of Deus Ex,
which is a science fiction game. Most words that are important in the Deus Ex
narrative, such as augmentation, LIMB clinic (augmentation clinics) and neu-
ropozyne (a fictional drug), are not common words in day-to-day English. As
a result, few headlines in the Gigaword dataset contain at least one seed word.
Luckily, Deus Ex takes places in a future version of Detroit, so we could just use
any headline that contains the word ‘Detroit’ for the survey.

If we look at the ratings for the statement ‘It is plausible that this headline is
part of the game’, the ratings for headlines from Churnalist, the original game
and Gigaword with seed words differ slightly, albeit still not significantly. The lat-
ter two categories are on average rated higher on ‘part of game’ than Churnalist
headlines. We saw in the previous evaluation experiments that participants defi-
nitely notice the differences in language quality for Churnalist headlines and Gi-
gaword headlines, so we estimate that this difference can be explained because
both categories contain manually-written headlines.

5.6 Conclusion

We have presented Churnalist, a system for generating fictional headlines. The
content of the headlines is determined by the input text, or rather the noun
phrases present in the input text, which function as seed words. It expands the
list of seed words by querying a knowledge base for related words and injecting
these into existing headlines via word substitution.

We circumvented problems with out-of-vocabulary seed words by using word
vectors based on subword information. For any out-of-vocabulary seed word, we
can create a word vector and use it to find related words in the knowledge base.
Alternatively, we can expand the list of seed words by querying ConceptNet for
related words. The user can partially control Churnalist’s output by filtering the
intermediary output of each step in the system pipeline.

Churnalist can be used by game writers, as an authoring aid for writing flavor
text. We have provided example outputs for every step in the system pipeline,

5

Generating flavor text headlines | 113

using a representative game text as input. Our system was developed using pub-
licly available datasets, open source libraries and only simple text modification
techniques. It requires no linguistic expertise from its users.

Although Churnalist is currently implemented for English, the use of external
datasets allows us to adapt the system to other languages and use cases with
minimal effort. This makes Churnalist suitable for different languages and game
types.

We conducted an evaluation of Churnalist’s outputs on various properties.
First, we evaluated the headlines on their form, i.e. whether they were grammat-
ically correct, whether they made sense to readers, whether the text looked like
a headline, and whether readers thought the headline was computer-generated.
In our analysis of the results, we compared the ratings for Churnalist with those
of a baseline, i.e. prose sentences from newspaper articles, and a gold standard,
i.e. hand-written headlines from published articles. Churnalist’s outputs scored
significantly worse on grammar than both other categories. It scored slightly
worse on sense compared to the newspaper sentences, although not significantly
different from the gold standard headlines, which is encouraging. Participants
rated the headline-ness of outputs not significantly different from the gold stan-
dard headlines. Interestingly enough, participants thought that the gold stan-
dard, human-written headlines were most likely to be generated by a computer.
A possible explanation for this is the recent media attention for large-scale lan-
guage models, such as GPT-2 and GPT-3, which can create multiple paragraphs
of seemingly coherent English prose at the press of a button. Various journalists
have used large language models to create (parts of) news articles, e.g. [204,
207, 121]. This might have caused participants to believe the prose sentences
from our evaluation survey were created with a similar technique.

We also evaluated the generated headlines on their intended function as fla-
vor text. We asked participants to rate headlines on their meaningfulness in
the context of a game description, and on the plausibility that they are part of
the relevant video game. For this evaluation, we compared Churnalist with ran-
dom Gigaword headlines as baseline, Gigaword with seed words as high-quality
and human-written equivalent of Churnalist’s outputs, and original game head-
lines as gold standard. For both properties, Churnalist was rated significantly
higher than the baseline. Churnalist’s performance differed when compared to
the two high-quality human-written categories. For meaningfulness, Churnalist
headlines were rated highest, but the differences between the three categories
are minimal. When asked how plausible it is that headlines are part of the video
game, participants rated Churnalist’s outputs lower than the two human-written
categories. This might be explained by the clear difference in language qual-
ity between Churnalist outputs and human-written headlines, which we saw in
the first evaluation experiment. However, for both properties, the differences
between Churnalist and our gold standard were not statistically significant.

5

114 | Chapter 5

6

6
Rebuilding Churnalist with GPT-2

6.1 Introduction

In the previous chapter, we saw that we can use Churnalist to generate flavor text
headlines. The evaluation of headline functionality showed that headlines that
contain seedwords score well on meaningfulness in the context of a game. Of all
headlines with seedwords, Churnalist’s outputs scored lowest on the statement
‘it is plausible that this headline is part of the game’. The evaluation of the form
of headlines showed that Churnalist’s outputs were significantly less grammati-
cal and syntactically correct that human-written headlines, which could explain
Churnalist’s lower score on the ‘part of game’ property.

The subpar language quality of Churnalist’s outputs is caused by two things.
Firstly, the low accuracy of the various open source libraries on which Churnalist
is built trickles down to the output. Churnalist is a sequential pipeline of var-
ious open source libraries for natural language processing, such as Pattern and
SpaCy. Even though the accuracy of open source NLP libraries might be over 80
or 90 percent, small error rates in libraries used in sequence might lead to large
accuracy errors downstream. For example, imagine a pipeline consisting of three
NLP functions with each an accuracy of 80%. This pipeline produces outputs that
are correct only 51.2% of the time: 0.8 · 0.8 · 0.8 = 0.512. Additionally, since
the NLP libraries are meant for processing English prose text, their accuracy on
headline text might be even lower.

Secondly, Churnalist uses naive substitution based on random number gener-
ation. To construct a headline, a random headline is chosen from the Gigaword
data and its object is substituted with a random seed word from the list. In many
cases, the chosen seed word does not fit the verb or prepositions of the original
headline, which results in an ungrammatical headline.

In this chapter, we describe Churnalist version 2, which has a word substitu-
tion module based on GPT-2. Because of its large training set and its resulting
latent knowledge of the English language, GPT-2 is known to perform well on

6

116 | Chapter 6

Figure 6.1: Architecture of Churnalist version 2. This version has a fine-tuned GPT-2 model
instead of a database with headlines and a word substitution module.

coherent and grammatical text generation, even without additional fine-tuning.
If we fine-tune GPT-2 on headlines extracted from GigaWord, the resulting lan-
guage model can be used in place of Churnalist’s word substitution module. We
hypothesize that substituting Churnalist’s rule-based substitution module with
end-to-end generation based on GPT-2 could significantly increase the quality of
Churnalists outputs. Increased language quality means that the outputs require
less manual editing before they could be included in a game, which is a practical
advantage should Churnalist be used for flavour text generation for a real-world
game.

The related work for this chapter was already discussed in the background
chapter on natural language generation, especially Section 3.3.3 and Section
3.3.4.

6.2 Method

We substitute Churnalist’s headlines database and the word substitution compo-
nent with a fine-tuned GPT-2 model for English. Figure 6.1 shows the architec-
ture of Churnalist version 2.

6

Rebuilding Churnalist with GPT-2 | 117

We want to use GPT-2 as a basis for a language model with the same function-
ality as Churnalist’s substitution module. That means a fine-tuned GPT-2 model
should have the following two properties:

1. The GPT-2 model should be able to produce the subset of English that is
specific to headlines

2. The GPT-2 model should be able to produce headlines that contain user-
defined seed words

We performed two experiments to create a language model that has both
properties. For the first property, we fine-tuned the smallest GPT-2 model (124M
parameters) on a dataset of headlines sourced from GigaWord. This first exper-
iment is described in Section 6.2.1. For the second property, we conditioned
GPT-2 by fine-tuning the smallest GPT-2 model on a dataset of headlines, anno-
tated with their object. We use object as a proxy for the topic of the headline.
This experiment is described in Section 6.2.2. We use gpt-2-simple1, an open-
source library for working with GPT-2, as basis for our implementation. Unless
otherwise specified, all texts are generated with the default generation param-
eters of gpt-2-simple. Note that the example results in this chapter were not
cherrypicked. To avoid sampling bias, we either list all generated samples, or
present a subset of generated texts randomly selected by a computer.

6.2.1 A GPT-2 language model for English headlines

Our first goal is to obtain a language model that can generate text in headline
form. Headlines have a different structure from normal English text. Since GPT-2
is pre-trained on a large corpus of English webtext, it has not modeled headline-
specific English yet. We created a GPT-2 model that has modeled ‘headlinese’ by
training the smallest GPT-2 model on a cleaned subset of the headlines extracted
from the annotated Gigaword [194] dataset. This is the same dataset that was
used as source material for Churnalist version 1. We filtered the GigaWord head-
lines for headlines that consist only of alphanumeric characters. This way, we end
up with data that is as clean as possible, without going through the headlines by
hand. If we would have used the unfiltered data, GPT-2 would be trained on
headlines that contain mismatched apostrophes, quotes, currency symbols, and
other noise. The cleaned dataset contains 1.5 million headlines in English. To
denote the beginning and ending of headlines, we enclose them in special start
and end tags: <|startoftext|> and <|endoftext|>.

We fine-tune a fresh GPT-2 model with 124 million parameters in 1000 train-
ing steps with the default fine-tuning parameters from gpt-2-simple. Training
took 1 hour in an online Google Colab environment. After 400 steps, the lan-
guage model had already learned the headline format and occassionaly included

1Gpt-2-simple by Max Woolf, https://github.com/minimaxir/gpt-2-simple/

6

118 | Chapter 6

1 Chinese firm to build major coal mine in Uganda
2 Five patients die after being shot in California
3 China adopts proposed new full-scale push-back on nuclear arms prolifer-

ation
4 Indonesian gold-buyers end up with huge debt to be paid back in six years
5 Bosnian Serb president arrives for talks with Serb insurgents
6 Pegasus-style aircraft crash kills three
7 Quarter-final spot for British soccer
8 Hong Kong bans tobacco advertising in schools
9 Chinese Embassy in Oman Attacked
10 Sweden Set Free of Criminals

Figure 6.2: Headlines generated by the fine-tuned GPT-2 model from our first experiment.
The prompt was <|startoftext|>. None of the generated headlines were
present in the training set.

1 Video game writers see special power of Internet
2 Video game writers to be put on trial in Sweden
3 Video game writers to sue game companies over Afghanistan ties
4 Video game writers want more cash
5 Video game writers and researchers face charges as criticism of links
6 Video game writers fail to check for plagiarism
7 Video game writers say they were full of pot
8 Video game writers banned for lifetime
9 Video game writers found dead on Canadian island
10 Video game writers hit back at Nintendo over non-payment-spending ru-

mors

Figure 6.3: Headlines generated by the fine-tuned GPT-2 model from our first experiment.
The prompt was <|startoftext|>Video game writers. None of the
generated headlines were present in the training set.

reporter names in headlines. Figure 6.2 shows 10 outputs generated by the fine-
tuned language model after 1000 training steps.

We can see from Figure 6.2 that our fine-tuned language model indeed cre-
ates text in ‘headlinese’. At first glance, the overall quality of the headlines is also
much higher than those of the first Churnalist. Churnalist version 1 often outputs
headlines where the verbs or prepositions of the headline do not match the sub-
stituted seedword. In contrast, the headlines generated by GPT-2 in Figure 6.2
are grammatical, and the verbs match the lexicographical form of the subjects.

We can already use this model to generate headlines about a specific topic,
by extending the prompt to include specific words. Figure 6.3 shows 10 headlines
that were generated by the prompt <|startoftext|>Video game writers.

6

Rebuilding Churnalist with GPT-2 | 119

The generated headlines about video game writers show GPT-2’s strength in gen-
erating coherent outputs. Various headlines contain references to concepts that
are semantically related to video game writers, such as “game companies”, “pla-
giarism” and “Nintendo”. Only headline 5 is incoherent, as it is not clear what ‘as
criticism of links’ means.

Using this language model for text generation has an important limitation
compared to Churnalist version 1. We can only control the output of this lan-
guage model by changing the prompt. If we want to include seed words in the
output, they can only be included at the start of a headline, as demonstrated in
Figure 6.3. In the next section, we will address this limitation.

6.2.2 Generating headlines with specific keywords

From the previous experiment we have seen that even the smallest GPT-2 model
can learn the language specific to headlines relatively quickly, i.e. in only 1000
training steps. However, we also want to be able to guide the language model to-
wards generating headlines that contain words chosen by Churnalist’s user. The
seed words should be able to occur anywhere in any position in the headline,
and not just at the beginning. We trained a second language model that is con-
ditioned on an extended version of the previous task. GPT-2 can be conditioned
on specific NLP tasks using only natural language sequences from the training
set. For example, to condition GPT-2 on translating English to French, training
the model on datapoints of the form translate, English text, French
text will lead to a fine-tuned model that can create French text from a prompt
of the form translate, English text. Our language model should be able
to perform the following task: given a seed word, create a text in headlinese that
contains that seed word.

In this experiment, we use the object of GigaWord headlines as a proxy for
the topic of a headline. GPT-2 could just as easily have been fine-tuned on the
task of substituting the subject instead, or both subject and object. The method
for fine-tuning and generation would have been the same.

However, we plan to compare GPT-2’s outputs with those of Churnalist ver-
sion 1. Our earlier experiments showed that Churnalist version 1 created head-
lines with the best language quality if only the object of headlines was substi-
tuted. Substituting the object by a random phrase is less obvious to a reader
than substituting the subject, because the chance that the verb matches a ran-
dom object is higher than that it matches a random subject. For example, com-
pare substituting the object and subject in the headline “US president decides
on carbon emissions.” The object “carbon emissions” can be substituted with
a whole range of phrases before the headline becomes ungrammatical. On the
other hand, the majority of substitution candidates will fit the verb “decides on”
as subject. Consequentially, the last version of rule-based Churnalist only substi-
tuted objects. We plan to compare the outputs of our fine-tuned GPT-2 models

6

120 | Chapter 6

with those of Churnalist version 1, which means both systems should perform
the exact same task.

We created a language model that can fulfill this task by training GPT-2 on
headlines that are annotated with the seed word, with each part of the input se-
quence surrounded by special tags, i.e. <|startoftext|><|object|>seed
word<|headline|>headline with seed word as object<|endoftext|>.
This way, the model is conditioned on this structure: it learns from the examples
that if the prompt contains <|object|>, a seedword, and <|headline|>, the
headline should contain the seed word as the object of that headline.

We used <|object|> as the tag to denote the topic of the headline. We
can use any tag that we like, as long as that particular sequence of tokens is
unique enough, given the training sets. Since GPT-2 has been trained on millions
of pages of web text, this means that our tags should be unique enough for this
training set, not just the training set we use for fine-tuning. For example, prompts
that use tags that are common in programming languages, such as HTML tags,
might accidentally lead to sampling completions that contain additional HTML,
thus distracting the model from the task we want to teach it.

We used SpaCy’s dependency parser to annotate all headlines in our dataset
with their object. It took SpaCy about two hours to annotate the headlines. Head-
lines for which Spacy could not find an object were removed from the dataset,
which left us with about 750,000 headlines. The resulting format of the training
set can be seen in Figure 6.4. From datapoint 1 and 4 we can see that SpaCy’s
dependency parser does not have perfect accuracy. For these two headlines, the
right objects are “funds for peacekeeping along Ethio-Eritrean border” and “new
law on religious freedom”. However, we estimated that the accuracy of the de-
pendency parser is good enough for our purpose. Annotating the 1.5 million
headlines by hand is not a feasible alternative.

We fine-tuned a fresh GPT-2 model of 124 million parameters for 5000 steps
on the annotated dataset. Figure 6.5 shows examples of headlines that were
generated by the resulting model. Generally speaking, the resulting model has
indeed learned to incorporate the phrase between the object-tag and headline-
tag.

Figure 6.6 shows 10 headlines that were generated from prompts that specify
a seed word. From these examples, we can see that the GPT-2 model is not
always succesful in incorporating the word in the headline. However, even when
the seed word does not literally occur in the headline, as in the case of headlines
3, 6 and 7, the headline still contains related words or substrings.

6.3 Error analysis

To assess whether incorporating GPT-2 improves the output of Churnalist, we
performed an error analysis of headlines generated with Churnalist version 1
and version 2. We did not perform another evaluation with human participants,

6

Rebuilding Churnalist with GPT-2 | 121

1 <|startoftext|><|object|>Funds<|headline|>OAU
Seeks Funds for Peacekeeping Along Ethio-Eritrean
Border<|endoftext|>

2 <|startoftext|><|object|>Tibetan
development<|headline|>Chinese Tibetologists
introduce Tibetan development in Prague<|endoftext|>

3 <|startoftext|><|object|>its air quality
objectives<|headline|>Hong Kong to review its air
quality objectives<|endoftext|>

4 <|startoftext|><|object|>new law<|headline|>Spanish
government to prepare new law on religious
freedom<|endoftext|>

5 <|startoftext|><|object|>likely ethics
probe<|headline|>Bush congressional ally faces
likely ethics probe<|endoftext|>

Figure 6.4: Datapoints in our second training set. We used SpaCy to annotate the headlines
in our dataset with their objects.

because the evaluation of Churnalist version 1 (see Section 5.5) already showed
that reusing words from the input in the output leads to a higher perceived co-
herence of generated texts.

We generated 150 headlines for each version of Churnalist, using the seed
words from the 3 games used for the Churnalist evaluation in Chapter 5: Cook-
ieClicker [267], Deux Ex: Human Revolution [92] and Simcity 3000 [183]. The
seed words are shown in Figure 6.7.

We evaluated the headlines by hand, manually annotating them with any
errors we found. Figure 6.8 shows the various errors we found, together with an
example from the 300 headlines.

Figure 6.9 shows the analysis results. The most frequently occurring problem
of Churnalist version 1 is that SpaCy’s dependency parser selects the wrong sub-
string of a Gigaword headline as object. Another common problem is a mismatch
between the verb of the original headline and the inserted seedword, which oc-
curs 34% of the time. As we can see, the errors that plague Churnalist version
1 hardly occur in outputs of Churnalist version 2. In that sense, replacing the
substitution module with a fine-tuned GPT-2 language model is an improvement.
However, Churnalist version 2 introduced two new errors, which did not occur
in headlines generated by the rule-based system: missing seed words and repe-
tition. Generating repetitive language is something that occurs frequently with
GPT-2, especially with smaller language models. Missing seed words occur when
we ask Churnalist version 2 to generate a headline with a seed word that is a

6

122 | Chapter 6

<|object|> <|headline|>

1 questions Finnish foreign minister questions EU constitution
2 bribery Britain investigators probe bribery by British winners of

Olympic
3 religious

freedom
US urges religious freedom for Taiwan refugees

4 new product China to introduce new product for water quality mon-
itoring

5 Dogs Chinese Children to Help Raise Dogs in Western Areas
6 France UN chief Blames France for Taliban
7 a third SKorea accepts a third of its EU aid
8 Italy Spain asks Italy to clarify its stance on EU constitution
9 Moves Kosovo Government Makes Moves to Keep Peace Alive
10 Karzai URGENT Taliban accuse Karzai of lying in

Figure 6.5: Headlines generated by the fine-tuned GPT-2 model from our second experi-
ment, without any prompt. Bold text denotes the object generated by GPT-2,
underlined text is the actual object of the headline.

<|object|> <|headline|>

1 video games Japanese TV stations told to stop using video games at
work

2 natural
language
processing

Sri Lankan students practicing natural language pro-
cessing

3 PhD students School of Globalization calls on students to pursue PhD
in HK

4 research project China sets up research project for foreign students
5 Dutch language Students protest Dutch language in university
6 dissertation China to receive paper version of World Heritage List
7 academia Landmine outrage hits education in south China

province
8 universities Uganda to teach universities to women and girls in

poverty
9 grant proposals Iraq continues grant proposals for sports development
10 graduation day Vietnam marks graduation day of foreign diplomats

Figure 6.6: Headlines generated by the fine-tuned GPT-2 model from our second experi-
ment, with a prompt that contains an object-tag and seedword. Bold text denotes
the seed word, underlined text is the actual object of the headline.

6

Rebuilding Churnalist with GPT-2 | 123

CookieClicker Deux Ex SimCity 3000

cookie magnate augmentation mayor
grandmothers cybernetics residential areas
cookie-baking grandmothers augmentations city
factories research lab industrial areas
cookie-producing factories Detroit city development
chocolate superhuman abilities city infrastructure
cookie factory Sarif industries municipality
number one cookie-producer biotechnology local taxes
cookie augmented human municipal taxes
chocolate human enhancement technologies local population
grandmother
sugar

Figure 6.7: Seed words for three video games with headlines used as input for Churnalist to
create new flavor headlines for these games.

proper name, a non-English word, or a word that is not frequently used in the
English language. In some cases, GPT-2 incorporates a word that shares a sub-
string with the seed word. For example, <|object|>augmentation resulted
in headlines with the words ‘segmentation’, ‘segregation’ and ‘fragmentation’. In
other cases, there was no clear relation between the seed word and the generated
headline. Especially the seed words for the game Deus Ex, such as ‘augmenta-
tion’, ‘augmented human’ and ‘Sarif industries’, triggered this error. Made-up
words are common in fantasy and science fiction narratives, so this limitation
could be a problem in the context of generating texts for video games with a
fantasy or science fiction setting.

6.4 Discussion

The results show that using GPT-2 instead of Churnalist’s substitution module im-
proves the language quality of Churnalist version 1. Some issues, such as depen-
dency parser errors, lexicographical errors and replacement errors, completely
disappeared. Mismatches between verbs and prepositions and topics were miti-
gated in version 2, although some outputs still have these issues.

Unfortunately, using a neural language model introduces a few new issues
in outputs that did not plague outputs in Churnalist version 1. In terms of out-
put language quality, we find new issues such as repetitive language (a common
problem in language generated by the smallest GPT-2 models) and ‘hallucina-
tion’, i.e. generating text about things that are not present in the input. In the
case of our model, we mean that GPT-2 generates headlines that do not contain
the seed word from the prompt at all. Instead, these faulty headlines contain
words that share a substring with the seed word, such as ‘fragmentation’ instead

6

124 | Chapter 6

Error Example

Wrong object selected by parser Dow Jones sells [stake|cookie] in AmericaE-
conomia magazine

Wrong singular/plural form Petrochemical Giant Raises [Funds|farming
chocolates] in Stock

Implementation error Congressmen recomm[end|city] end to baseball
monopoly

Verb mismatch Hong Kong Stocks Hit [New Low|city infras-
tructure]

Preposition mismatch Giuliani promises [advice|mayor] by May on
measures against Mexico City crime

Seed word not present in headline Russia says it will not be forced to use alu-
minium fragmentation (seed word: augmenta-
tion)

Repetition Australia to modernize and modernize armed
forces

Figure 6.8: Examples for the various error types we found in the 300 headlines generated
for the error analysis. The errors are denoted in bold. The pipe symbol | denotes
substitution.

Churnalist version 1 Churnalist version 2

Error Headl Perc Headl Perc

Wrong object selected by parser 53 35.33% 0 0%
Wrong singular/plural form 14 9.33% 0 0%
Implementation error 2 1.33% 0 0%
Verb mismatch 51 34% 11 7%
Preposition mismatch 13 8.66% 2 1.33%
Seed word not present in headline 0 0% 18 12.66%
Repetition 0 0% 2 1.33%

Headlines without errors 55 36.66% 119 79.33%

Figure 6.9: Errors in 150 headlines generated with Churnalist version 1 and version 2. Mul-
tiple errors can occur in one headline.

of ‘augmentation’. It is as if GPT-2 misread the prompt. The latter often occurred
when the prompt contained non-English or rare English words. Repetition and
hallucination problems have been reported by other researchers as well. Lit-
eral object hallucination is a common problem in caption generation for images
[220], and small GPT-2 models are known to converge on repetitive language
[209, 130].

Our error analysis showed that overall, the language quality of Churnalist
version 2 is significantly better than that of version 1. Of the headlines generated

6

Rebuilding Churnalist with GPT-2 | 125

with version 1, 36% can be used without any additional manual correction, for
79% of headlines generated with Churnalist version 2.

In determining which approach yields the best results, we should also con-
sider other aspects of both versions of Churnalist. The rule-based version of
Churnalist that was described in Chapter 5 is a white box system. In every gen-
eration step, the user can inspect the actions of the system and influence the
generation process. Churnalist version 2 uses neural generation, which is not
fully transparent. Recent research shows that neural language models are not
fully opaque. With brute-force techniques and statistical analysis, it is possible
to gain insight in latent information in GPT-2, such as biases. However, getting
this information is significantly more complex than just inspecting the generative
progress of a white-box system. Consequentially, if Churnalist version 2 creates
bad quality outputs, such as outputs with offensive contents, it is hard to assess
what caused this problem. In the case of Churnalist version 1, we have much
more possibilities for inspection and quality control.

One of the limitations of Churnalist version 1 that was not addressed is that
Churnalist works only for English language headlines. In theory, we could use
the same approach to build a rule-based headlines generator for other languages,
provided there is a large enough dataset of headlines available for that lan-
guage, and a set of natural language processing libraries. The GPT-2 extension
of Churnalist does not solve this problem. However, recent work by Vries and
Nissim [279] suggests that GPT-2 can be ‘recycled’ to yield a language model for
other languages, such as Italian or Dutch. Another alternative to copying GPT-
2’s architecture is using one of the open-source alternatives to the GPT-2 model,
such as GROVER [290], a method that was used to create ARAGPT2 [8], a large
scale language model for Arabic. Combined with a dataset of headlines in that
other language, our method could be adapted to other languages.

Another limitation of Churnalist version 1 is that we need a dataset with
example headlines of sufficient size. The first version of Churnalist uses these
headlines as substitution medium. Churnalist version 2 also requires this dataset
for fine-tuning GPT-2 on the headline generation task. In both cases, the size
of the dataset determines how well the system will work. We hypothesize that
both versions of Churnalist have different dataset requirements in terms of size,
but we cannot quantify these requirements yet. In Churnalist version 1, the
generative space is determined by the number of seed words S that the user
finally marks as acceptable, and the total number of headlines H in the example
dataset: Churnalist version 1 can create a maximum of S · H headlines. For
version 2, we need sufficient headlines to teach GPT-2 the two aspects of the
task: the definition of headlinese, and the latent task operationalized with the
two tags <|object|> and <|headline|>.

By using GPT-2 we have mitigated the language quality problems of Churnalist
version 1, but introduced new problems that are inherent in using large scale
language models, such as the need for computation power for fine-tuning and

6

126 | Chapter 6

sampling the language model. The fine-tuned language model that we used
is relatively small in terms of size, only 400 Mb. After the fine-tuning step is
complete, sampling the model for generation is less computationally expensive.
However, generating outputs with gpt-2-simple is still slow, about 1 minute
per prompt, although this might be because the open source implementation is
not optimized for computation speed.

The confusion of GPT-2 when we include non-English words in the prompt
also points to another problem. If we want to use our approach for generating
text that includes game-specific words, such as ‘augmentation’ in the case of
Deux Ex: Human Revolution, we need to teach the GPT-2 model the semantics of
these words, for example by providing it examples of how these words are used
in English text. It would be useful to fine-tune GPT-2 on additional game text,
so that the game-specific words are incorporated in the language model prior to
generation.

6.5 Conclusion

This chapter described a fine-tuned GPT-2 language model as alternative for
Churnalist’s substitution module. We performed an error analysis of headlines
generated with the two versions of Churnalist, which showed that using GPT-2
solves or mitigates most of the problems in outputs created by Churnalist ver-
sion 1. Only 36 percent of headlines generated by version 1 were completely
free of errors, in contrast to 79 percent of headlines generated by Churnalist ver-
sion 2. Additionally, training the GPT-2 model turned out to be much faster and
more straightforward than building a rule-based module from a combination of
open-source NLP libraries.

However, the GPT-2 language model introduced new problems which did
not occur in the rule-based substitution module. The substitution module of
Churnalist version 1 is a white box system, whereas GPT-2, which is a neural
language model, is black box. This means that text generation with Churnalist
version 2 is not fully transparent, which makes it harder for Churnalist’s user
to analyze the generation process if the outputs are of sub-par quality. Addi-
tionally, version 2 outputs sometimes converge on repetitive language, and the
system has problems generating headlines from prompts containing non-English
or infrequently occurring words. This is a serious drawback, since game nar-
ratives might contain many non-English words, especially games with a science
fiction or fantasy setting. A possible solution to this problem is performing addi-
tional fine-tuning of GPT-2 on texts extracted from the video game in question.
The game-specific words and their implicit semantics then become part of the
language model. However, datasets with video game text are scarce, so this
work-around might not always be viable in practice.

In the next chapters, we will continue this line of investigation. In Chapter
7, we will fine-tune GPT-2 on text from roleplaying video games, and use the

6

Rebuilding Churnalist with GPT-2 | 127

fine-tuned language model to generate new flavor text. In Chapter 8, we will
address the scarcity of video game text corpora. We will investigate where we
can find new datasets of video game texts, and present three new corpora that
can be used for fine-tuning GPT-2.

6

128 | Chapter 6

7

7
NPC dialogue generation from
annotated video game quests

In Chapter 6 we investigated how GPT-2 can be fine-tuned on a task-specific
dataset annotated with special tags. We used the resulting model to generate
flavor text for video games. In our case, we used GigaWord headlines to fine-
tune a GPT-2 model for creating headlines that can serve as flavor text in games.
In this chapter we continue this exploration, this time working with video game
data from a commercial role-playing game as source material.

This chapter is based on the following peer-reviewed publication:

• Judith van Stegeren and Jakub Myśliwiec. “Fine-tuning GPT-2 on anno-
tated RPG quests for NPC dialogue generation”. In: Proceedings of the 16th
International Conference on the Foundations of Digital Games (FDG) 2021.
FDG ’21. Online: ACM, Aug. 2021

7.1 Introduction

In this chapter we investigate the efficacy of Transformer-based models, such as
GPT-2 [209] and BERT [85], for dialogue generation for quests in role-playing
video games. Role-playing games are a particularly suitable application domain
for natural language generation techniques, as this genre leans heavily on nar-
rative [23]. The importance of narrative often gives rise to a large amount of
in-game text. In many RPGs, the main game narrative is supplemented with
side-quests, i.e. minor narrative threads that may be pursued by players for
game advantage, but which have no impact on the main story [43, p. 44]. Most
side-quest have the form of non-obligatory small errands, e.g. speak to a spe-
cific NPC, kill 10 monsters, fetch 3 ingredients for a potion, or collect 7 pieces
of a treasure map. They tend to follow a fixed structure, so they lend them-
selves well to procedural generation. We use the massive multiplayer online RPG
(MMORPG) World of Warcraft [39] as a case study for our research.

7

130 | Chapter 7

Figure 7.1: A player character in World of Warcraft Classic starts the quest ‘Dwarven out-
fitters’ by talking to an NPC named ‘Sten Stoutarm’. The quest-giver NPC is
identifiable by a yellow exclamation mark above his head. The dialogue box on
the left shows the quest title, flavor text in the form of dialogue, quest objective
and the quest rewards.

Figure 7.1 shows a screenshot of World of Warcraft Classic, where a player
is talking to a quest-giver NPC. The NPC offers the quest ‘Dwarven outfitters’,
one of the first quests for Dwarven player characters. Wowhead is a website
that provides a searchable database, internet forum, strategy guides and player
character services for World of Warcraft. Players can look up properties of World
of Warcraft quests, such as the starting location and rewards, in the Wowhead’s
quest database. Figure 7.2 shows the Wowhead quest database entry for this
same quest.

From Figure 7.2, we can see that, among other properties, quests have a title
and a quest objective, i.e. the assignment that the player should complete to
earn the quest reward, such as experience points, items or money. Typically,
quests are obtained by the player through special quest-giver NPCs. These NPCs
introduce the quest to the player and contextualize it in the game world with a
few lines of dialogue. The dialogue lines with the quest’s backstory are a form
of flavor text, i.e. decorative text that is not essential to the gameplay. If we
remove the dialogue lines from the game, the quest is still playable, but the
quest is no longer explicitly linked to the game world and the game narrative.
We have investigated whether GPT-2 can be taught the lore and writing style
of World of Warcraft, and whether we can use this model to generate flavor
text for quests, given a title and an objective. There are already many systems
which can generate video game narratives and quests in certain structures [153].

7

NPC dialogue generation from annotated video game quests | 131

Title Dwarven Outfitters

Objective Sten Stoutarm would like 8 pieces of Tough Wolf
Meat.

Requirements Tough Wolf Meat (8)

Description What do we have here? You look as though you might
need something to keep your hands warm, hm?

I’ll tell you what would help: a pair of nice, warm
gloves. And, being the kind soul that I am, I’d be more
than happy to provide you with a suitable pair. I’ve
one condition, however.

I need you to go get me some wolf meat. Nice
arrangement, hm? You bring me some wolf meat, and
I’ll make sure you don’t lose any digits to frostbite.
Well, what do you say?

Progress Wolves giving you a bit of trouble? You’d do well to
avoid the fangs and claws and other sharp bits, yes?

Completion Ah! Wonderful. The wolf meat should do nicely. Oh,
don’t worry, <name>, I wouldn’t forget my part of the
bargain. Here, one of these should fit you.

Rewards You will be able to choose one of these rewards:
Rabbit Handler Gloves
Wolf Handler Gloves
Boar Handler Gloves

Gains Upon completion of this quest you will gain:
80 experience
100 reputation with Ironforge
100 reputation with Gnomeregan Exiles

Figure 7.2: The entry for World of Warcraft Classic quest ‘Dwarven outfitters’ from the Wow-
head quest database. Description, Progress and Completion show three dia-
logues for the quest-giver NPC. These lines are shown to the player upon start-
ing the quest, during the quest and after quest completion, respectively.

However, most of these systems use rule-based approaches to generate surface
text for those stories [155]. We explore whether GPT-2 is a viable alternative for
rule-based approaches, especially for generating quest surface text.

Our contribution is two-fold. We have created a fine-tuned GPT-2 model
based on a dataset of World of Warcraft quests. We then show that this model
can be used to generate new dialogue lines for quest givers in World of War-

7

132 | Chapter 7

craft, given a human-written quest objective and a quest title as a prompt. We
have evaluated our approach by comparing hand-written texts from the same
game with the outputs of our generator on the properties of language quality,
coherence and creativity in a crowdsourcing experiment. Our code and dataset
are available for re-use by other researchers, and a working demo of the trained
model can be found online.

7.2 Related work

Our research is related to work that investigates procedural text generation for
video games, which was discussed in Chapter 2, and neural language generation
with GPT-2, which was discussed in Chapter 3.

7.2.1 Quest generation

Kybartas and Bidarra [153] discuss various examples of quest generation re-
search in their survey paper about story generation. One of the early approaches
is SQUEGE [199]. SQUEGE randomly selects quest templates, called patterns,
from a database and then populates the template with appropriate informa-
tion about characters, locations and items. Quests are represented as branching
graphs, where player actions and other quest events are nodes, and the edges
signify a temporal order. The authors of ReGEN [155] built on SQUEGE’s ap-
proach and proposed a method for graph rewriting, which is capable of creating
complex branching stories. However, the surface text of the generated quests is
still created with a rule-based approach, which limits the variety of the language
of the final artifact. Doran and Parberry [87] explored the use of context-free
grammars in RPG quests. As rule-based models are generally not generalizable
to other domains, these approaches risk becoming repetitive.

Ammanabrolu et al. [6] compared two generation approaches for quest gen-
eration in a text-based cooking game: one based on Markov chains, and one
based on neural generation. The authors used a fine-tuned GPT-2 model to gen-
erate surface text, i.e. cooking instructions, for their generated quests. Crowd-
source workers were asked to play two generated quests and evaluate the quests
on the properties of perceived creativity and coherence. The authors found that
neural generation offers more value and greater coherence, whereas the Markov
model produced quests that are more surprising and novel. They also noted that
the neural generation approach requires less domain knowledge and is poten-
tially more generalizable to other domains.

7.2.2 NPC dialogue generation

In World of Warcraft, the flavor text for quests consists of quest-giver NPC dia-
logue. Other researchers have investigated techniques for NPC dialogue gener-

7

NPC dialogue generation from annotated video game quests | 133

ation, although we have not yet seen dialogue generation for games based on
Transformers such as GPT-2. Walker et al. [280] generated dialogue for the pro-
totype role-playing game SpyFeet, based on statistical machine learning models
trained on film character dialogue. Ryan et al. [229] presented a method for
annotating human-authored dialogues, so that different parts of these dialogues
can be recombined to form new dialogues. The authors tested their approach on
dialogue of the social AI engine system Comme il faut (CiF), used in the game
Prom Week. Tracery [70], a tool for generative grammars, has been used in
various games to generate in-game text, including dialogue. Ryan et al. [223]
created Expressionist, an authoring tool for generating in-game text at runtime.
The tool is based on context-free grammars with added markup labeling. Users
can use user-chosen tags to annotate non-terminal symbols with arbitrary meta-
data, which gives new expressive power to a context-free grammar. Lessard et
al. [164] used Expressionist to generate dialogue for their resource management
game Hammurabi.

7.2.3 Other neural text generation for video games

A final notable example of neural text generation for video games is the game AI
Dungeon [282]. AI Dungeon acts as a cross-over between a virtual tabletop Dun-
geon Master and a classic text adventure game. Text adventure games generally
consist of a pre-written narrative, and accept input from the player in the form of
natural language text, such as ‘open door’, ‘pick up sword’ or ‘fight grue’. AI Dun-
geon is similar to these classic text adventures in that it accepts natural language
input from the player. However, instead of following a pre-written story, a neu-
ral language model extends the story on the fly, using the user input as prompt.
Earlier versions of AI Dungeon used GPT-21 fine-tuned on text from Choose Your
Own Adventure-style games.

AI Dungeon’s underlying neural model has some similarities to our approach:
both use a fine-tuned version of the pre-trained GPT-2 model, trained on struc-
tured data from narrative games. However, AI Dungeon’s approach differs from
ours in that it was finetuned on a more generic dataset, spanning different lan-
guage styles, narrative genres and topics. Our GPT-2 model was trained on homo-
geneous data, namely quests from World of Warcraft. Furthermore, the goals of
both language models are fundamentally different. AI Dungeon is meant to func-
tion similar to a Dungeon Master. In table-top games, Dungeon Masters should be
able to respond to any ‘input’ that the players throw at them, within the rules of
the game. As a result, AI Dungeon’s language model should be able to deal with
a huge variety of inputs. By design, the model can be used for text generation
without any human supervision; text is generated, and immediately presented
to the player. Our language model, on the other hand, is meant as an authoring

1https://pcc.cs.byu.edu/2019/11/21/ai-dungeon-2-creating-infinitely-generated-text-adven
tures-with-deep-learning-language-models/

7

134 | Chapter 7

aid for game writers. The idea is that generative language models can be used to
do the heavy lifting in creating new content, something that may benefit game
development companies as the playable content for video games, especially for
open-world RPGs and MMORPGs, increases. Outputs are not meant for direct
inclusion in a game; instead, they should be checked and possibly modified by a
human writer.

7.3 Method

We want to build a text generator that, given a quest title and objective, can
generate dialogue lines for a quest-giver NPC. Our approach is fine-tuning a pre-
trained GPT-2 language model on a dataset with quest information, and using
this fine-tuned model to generate NPC dialogue. In this section, we start by
discussing our training data, which is followed by a description of how we fine-
tuned the model and used it to generate new dialogue.

7.3.1 Data

When we started this research project, we had not chosen a particular game to
work with yet. To fine-tune GPT-2’s pre-trained model, we needed a dataset with
quest data. Specifically, we wanted to finetune the model with training data
that has been annotated with tags that describe the structure of the data, fol-
lowing the approach of Zellers et al. [290]. Consequently, we needed a dataset
that included NPC dialogue, and quest titles or quest objectives to contextualize
the NPC dialogue. We estimated that using data from Massive Multiple On-
line RPGS (MMORPGs) would be a good idea, since these generally have more
playable content than offline games and single-player games. These games tend
to have large player communities, which could mean that information about
quests would be obtainable online, for example from fan-websites. Initially, we
identified three possible sources for a dataset that fulfills this requirement, with
data from popular MMORPG games:

1. Wowhead quest database2 which contained 24,981 quests from World of
Warcraft [39];

2. Destiny tracker quest database3, containing 680 quests from Destiny [50];

3. EVEinfo.com mission database4 with 310 EVE Online [58] missions

It is possible to use GPT-2 without any fine-tuning, or fine-tune GPT-2 with
relatively small datasets. However, since we wanted to teach GPT-2 a particular

2https://www.wowhead.com/quests
3https://db.destinytracker.com/d1/quests
4https://eveinfo.com/missions/

7

NPC dialogue generation from annotated video game quests | 135

Title

The Wayward Crone

Objective

Confront Helena Gentle in her home outside of Fallhaven

Description

The ledger indicates that an old woman named Helena Gentle recently took
up residence in a house down the road from the town. The villagers’ writings
point to her being involved somehow with a variety of maladies that struck
the village recently. It’s possible that she may know what’s behind this spell,
if it hasn’t afflicted her as well.

Figure 7.3: Quest ‘The Wayward Crone’ from the World of Warcraft quest database

structure (i.e. a quest consists of a title, objective and dialogue), the dataset
should be large enough for the model to capture the structure of the training
data. A dataset with a few hundred datapoints is probably not large enough to
change the pre-trained model in a significant way, and thus to generate outputs
that follow the structure of a quest. We estimated that, individually, the Des-
tiny and EVE Online datasets were probably too small to use as training data. A
possible solution for this is combining the three datasets into one large dataset.
However, although their structure is the same, the three datasets are too differ-
ent to combine successfully. EVE Online and Destiny are science fiction games,
whereas World of Warcraft is a fantasy game. Destiny quests have very short
quest descriptions in the form of a quote, as opposed to World of Warcraft and
EVE Online quests, which have longer dialogues as quest description. EVE On-
line’s quest objectives lack in variety, as quests fall in one of only four categories.

During preliminary testing, we found that fine-tuning on one homogeneous
dataset leads to higher quality output. Since the Destiny and EVE Online datasets
are relatively small (only a few hundred quests compared to WoW’s 24,000
quests), we decided to use only the World of Warcraft quest database. Figure
7.3 shows an example quest from this dataset.

7.3.2 Training

We added tags to the dataset that describe the structure of the datapoints. Fig-
ure 7.4 shows the tags we used to annotate the quests in the World of Warcraft
database, together with a concrete example datapoint from our training set. GPT-
2 uses these tags to learn the structure of the datapoints in the training set. Dur-
ing generation, we can use these tags to steer GPT-2 towards a particular output
structure: if we provide a partial datapoint (title and objective) as a prompt,
GPT-2 will expand it with the part we want to generate (quest description, i.e.

7

136 | Chapter 7

Structure

<|startoftext|> [quest title]
<|obj|> [quest objective]
<|text|> [quest description]
<|endoftext|>

Example datapoint

<|startoftext|> In Dire Need
<|obj|> Hear out the Council of Six in the Purple Parlor.
<|text|> The ill tidings you bear only increase the concerns the Council
has been having. I know you have your hands full with the Tomb of
Sargeras. Make no mistake, the battle for the tomb remains our top
priority–but we must not think the Legion foolish enough to rely on brute
force alone. They are far more cunning than that. Please, hear us out.
<|endoftext|>

Figure 7.4: Structure of datapoints in our training set. Quests are annotated with special
tags that denote the quest title, objective and description (NPC dialogue).

<|startoftext|>In Dire Need<|obj|>Hear out the Council of
Six in the Purple Parlor.<|text|>

Figure 7.5: Prompt for the quest ‘In Dire Need’ from World of Warcraft. The prompt is used
to generate NPC dialogue for the quest-giver NPC.

dialogue). We used the second-largest GPT-2 language model with 774 million
parameters, which we deployed in a Google Colab environment, a Jupyter note-
book environment in the cloud that comes with computation time on GPU. The
basis of our code is Max Woolf’s gpt-2-simple5 project. Fine-tuning GPT-2 on our
annotated training data took approximately 4 hours using an NVIDIA Tesla V100
GPU.

7.3.3 Generation

We use a quest title and objective, together with their start tags, and the start-
ing tag for NPC dialogue, i.e. <|text|>, as prompt for the generator. For an
example prompt, see Figure 7.5. The generator creates new text by sampling
the fine-tuned language model for follow-up tokens. The model continues gen-
erating text until it has generated a pre-determined maximum amount of tokens.
The output is cut off at the first <|endoftext|> token.

5M. Woolf. GitHub - minimaxir/gpt-2-simple: https://github.com/minimaxir/gpt-2-simple

7

NPC dialogue generation from annotated video game quests | 137

Title In Dire Need
Obj Hear out the Council of Six in the Purple Parlor.

Original dialogue

The ill tidings you bear only increase the concerns the Council has been
having. I know you have your hands full with the Tomb of Sargeras. Make no
mistake, the battle for the tomb remains our top priority–but we must not
think the Legion foolish enough to rely on brute force alone. They are far
more cunning than that. Please, hear us out.

Temp Generated dialogue

0.1 The Council of Six has been trying to get a word in, and I’m not sure they’ll
be able to get one out loud in the Purple Parlor. I’m sure they’ll be waiting for
you in the Purple Parlor, if you’re interested in hearing what they have to say.

0.2 The Council of Six is in dire need of your help. They have been trying to
convince me to join their cause, but I refuse to be manipulated. I have no
love for the Lich King, but I will not be manipulated into helping them. I
have heard that they are holding a meeting in the Purple Parlor. I would like
to hear out the Council of Six before I make a decision.

0.3 The Council of Six has been trying to get a word in, but we’ve been so busy
with the attack on the Broken Shore that we haven’t had time to hear from
them. I’m sure they’re worried about their people. I’d like you to go to the
Purple Parlor and hear what they have to say. I’m sure they’ll be worried
about their people, too.

0.4 We are at war with the Legion. The time to strike is now. We need to hear out
the Council of Six. They are the ones in charge of running this place and we
must listen to them. I will be right behind you.

0.5 The Council of Six is a council of the six. The leader of the Council of Six is
called the “Crown Prince.” The Crown Prince has a council with a council.
The Council of the Six is a council of the six. The Council of the Six is a
council of the six. The Crown Prince is a king. The Council of the Six is a
council of the six. The Council of the Six is a council of the six.

0.6 And with that, we have a perfect opportunity to drive a wedge between the
Horde and the Alliance. I have a feeling that the Council will be willing to
overlook the fact that the orcs have been tricked. Bring the Council to the
Purple Parlor as soon as you can.

0.7 Hear out the Council of Six in the Purple Parlor!
0.8 Enter The Purple Parlor and you will find me, the Council of Six, and Thomas

Paine. I believe you already know who Paine is. Go to the council. Go, . Find
them and hear out their concerns.

0.9 The Council has a rallying point all across The Dreamgrove. There is an
empty throne oak in the purple parlor, and a creature named Amalia should
be there. Unfortunately her days of being known as a Gallywix-level
concession vendor are done.

Figure 7.6: Quest descriptions generated by our finetuned GPT-2 model with temperatures
ranging from 0.1 to 0.9. All outputs were generated with the prompt from Figure
7.5.

7

138 | Chapter 7

Temp Generated output

0.7 Your aid is needed here, not in the Garden, but in the Purple Parlor, where
the Council of Six holds its meetings. Among those attending are... well, let’s
see. It wouldn’t do for me to name them, would it? The ones that might
know are... well... let’s see... The Council of Six is worried about the new
naaru. I can’t leave them in this place. I need to go back to the Hall of the
Guardian. Hear out the Council of Six in the Purple Parlor.

0.7 Master Ashwall wants you to head to the Purple Parlor in Zoram’gar Outpost
and inform them of what you have learned.

0.7 Hear out the Council of Six in the Purple Parlor!
0.7 The Alliance needs your help! Many of our brothers and sisters have been

placed in peril. Please hear out the Council of Six, we need to know how to
handle this situation.

0.7 This treaty was reached in less than 24 hours despite the turmoil that was
sparked by the betrayal of Orrmok. If you haven’t heard yet, the Warchief
dispatched Blastdancer Kalaran to deal with you personally. I won’t be fooled
again. Do... do not do... this.

0.9 The Council has a rallying point all across The Dreamgrove. There is an
empty throne oak in the purple parlor, and a creature named Amalia should
be there. Unfortunately her days of being known as a Gallywix-level
concession vendor are done.

0.9 Hear me out! We’re in dire need of help. Our explosive ordnance is getting
dangerously low on both of our runs. I know sylvari aren’t usually known for
their industriousness, but this barrel needs tolled and our prophet needs his
prayers answered. Who knows, maybe you can help us out.

0.9 I will not keep you waiting any longer. I can offer you an undersea vantage
that will let you see Bevel’s will done. Please, take advantage of this
juxtaposition of nature and technology. Meet with the Council of Six in the
Purple Parlor. When you are prepared, we will speak again.

0.9 Greetings, and welcome to the Emerald Sanctum. It is with great pleasure
that the Council of Six can present to you its members. Peerless Master of the
Arena Shantelos, Peerless Trainer of Arena Mastery, Champion of the Lonely
theurge, and Peerless Master of Evodyne Industries are bound by the will of
the Council of Six. Do welcome your retinue to the circle of gladiators.

0.9 The felbat is a vicious predator, and the last thing we need in the Broken Isles
is another of our kind. Report to the highest ranks of the Kirin Tor and tell
them of our plight. The Broken Isles is a dangerous place where only the
fittest survive. I’ll designate a short period of time for them to consider our
concerns. I should take my leave. Stay well.

Figure 7.7: Quest descriptions generated by our finetuned GPT-2 model with a temperature
of 0.7 and 0.9. All outputs were generated with the same prompt from Figure
7.5. This table illustrates the wide range in quality in artifacts generated with the
same generation parameters.

7

NPC dialogue generation from annotated video game quests | 139

We can influence generation by changing the temperature parameter. Tem-
perature is a number between 0 and 1 that determines the randomnes of comple-
tions. Lower temperature leads to less randomness, and might lead to repetitive
outputs. A higher temperature leads to more randomness, and consequentially
unexpected output, which influences output properties such as coherence, lan-
guage variety, and interestingness.

We tried to find the best value for the temperature parameter empirically,
by manually inspecting outputs of the model that were generated with various
temperatures. Figure 7.6 shows example outputs for temperatures between 0.1
and 0.9. Since temperature determines the predictability of outputs, choosing a
too low temperature leads to repetitive language in the output text. The example
in Figure 7.6 that was generated with a temperature of 0.5, demonstrates this, as
it consists mostly of words and phrases that already occurred in the prompt title.
With a temperature of 0.7, the generator created a quest description that was an
exact copy of the quest objective. The outputs with an even higher temperature
of 0.9 were more unexpected and contained the most variety, thus we chose this
temperature for generating our evaluation outputs.

Qualitative inspection of the generated quests shows that the fine-tuned GPT-
2 model outputs artifacts that are highly coherent with the prompt. In Figures 7.6
and 7.7, multiple generated quest descriptions contain references to ‘the Council
of Six’, a name that appears in the quest objective of the prompt.

Interestingly, our model has learned the structure so well that it often gener-
ated entire quests by itself. They follow the exact same structure as our training
data, i.e. title, objective, and description, with each part delimited by tokens.
Because the training set was taken from World of Warcraft, the generated quests
contain words, phrases and names that are reminiscent of the lore of the game
world.

7.4 Evaluation

7.4.1 Experiment design

We conducted an online survey to evaluate the outputs of the generator. Answers
to the survey were collected via GoogleForms. The survey was shared with bach-
elor students of the University of Twente. To recruit additional participants, a
link to the survey was also shared online. Participants received an information
brochure and indicated their consent before partaking in the study. They received
no renumeration for participation in the study. The evaluation experiment was
approved by the Ethics Committee of the Faculty of Electrical Engineering, Math-
ematics and Computer Science at the University of Twente.

Participants were presented with 20 quests, which were ordered randomly.
Every participant rated the same 20 quests. 10 quests were randomly chosen
from the World of Warcraft dataset, and 10 quests were generated with our fine-

7

140 | Chapter 7

tuned GPT-2 model, using a randomly chosen title and objective from the train-
ing set as prompt. To keep the questionnaire brief, we decided beforehand to
only evaluate outputs that had been generated with a single temperature value,
namely 0.9. The generated quests were generated in one go, and not cherry-
picked from a larger set of outputs. Figures 7.8 – 7.12 list the quests that were
used in the evaluation survey. For each quest the participants were asked to
indicate how much they agreed with 5 statements on a 7-point Likert scale. Par-
ticipants rated all 20 quests on the following 5 statements, for the properties
language quality, coherence and creativity:

1. The description makes use of correct English.

2. The goal is clear from the description.

3. The description is written in a novel way.

4. The description is surprising.

5. The description is valuable.

For language quality, participants were asked to indicate their agreement with
Statement 1. To measure the perceived coherence between the quest objective
and the NPC dialogue, we used Statement 2. We used Boden’s breakdown of cre-
ativity, similar to the approach of Ammanabrolu et al. [6]. According to Boden
[41], creativity can be measured in terms of novelty, surprise and value (State-
ments 3–5). Based on preliminary testing of the survey questions we decided to
substitute the word ‘valuable’ with the word ‘creative’, as participants found the
question about value too confusing.

The survey contained two additional questions about the participant’s level of
English on the CEFR scale, and their level of familiarity with role-playing video
games on a scale of 1–5.

7

NPC dialogue generation from annotated video game quests | 141

Trouble at the Docks.
Crane Operator Bigglefuzz in Ratchet wants you to retrieve the bottle of
99-Year-Old Port from Mad Magglish who is hiding in the Wailing Caverns.

Original Generated
Oops! Had a little mishap, as you can
see! The morning cargo shipment from
Booty Bay was huge. Huge I say! Never
seen so many crates. Well, I was trying to
expedite things so I started unloading a
bit more than I could handle. That’s
when everything came tumbling down.
Before I knew what was going on, I saw
that menace, Mad Magglish, go running
off with a bottle of 99-year-old port.
Chased him all the way to Wailing
Caverns. No way I was going in there.
Maybe you’re brave enough to find him?

My wife took me to the Docks last week
to appear on one of those ’news’ shows
some goblin or goblin-looking creature is
running. We were going to get a discount
as it was a special occasion, but the first
news report I saw, Mad Magglish was
already in the caves and stealing all the
time. He’s the one who gave that old
pirate outfit to his son, who is basically a
glorified beer sailor now. It’s never safe to
take old pirates’ clothes, they usually
have valuable chestnuts inside.

Proof of Strength: Ogron Horn.
Take the proof to Limbflayer at Beastwatch in Gorgrond.

Original Generated
This horn is proof of your strength at
slaying ogron and your gladiator friend
has born witness! Take the horn back to
Limbflayer and claim your accolades!

Take this to Limbflayer. I can’t guarantee
that he’ll believe it, but I’m confident that
he can convince it’s none of my business.
I’ve seen the certain beasts growl, so
perhaps he’ll take it as a personal insult
that I’m actually here. But I bet he won’t.
You’ve proven your mettle. You deserve
the horn.

Figure 7.8: Generated quest descriptions that were used in the evaluation survey, together
with the original dialogue as it appears in World of Warcraft. The quest title and
objective were selected randomly from the WoW dataset and used as a prompt
for the generator. All outputs were generated with a temperature of 0.9.

7

142 | Chapter 7

Rituals of Power.
Bring the book Rituals of Power to Tabetha in Dustwallow Marsh.

Original Generated
Hm... now that I think about it, I don’t
have my book! You see, I had some
gambling debts and to pay them off I sold
the last copy of Rituals of Power to a
member of the clergy.... A member of the
Scarlet Brotherhood. He must have taken
it to their library in the Scarlet Monastery
in Tirisfal Glades! If you want that book,
then you’ll have to go to the monastery to
find it. And sorry about all the trouble.
I’m not myself these days...

Something in this book seems to be
purging the memory of the demi-god,
Rukhmar. I’m not sure what purpose it
could be serving, but it’s disabled and
cannot be used again until the ritual is
prepared. You’ll need some materials if
you plan on performing the ritual. Bring
me a copy of the Rituals of Power and I’ll
create the ritual for you. It should only
take you a few minutes. Travel to
Orgrimmar and speak with my assistant,
Tabetha.

Spray it Again.
Bring the Box of Bugkill Fumigators to Marcy Curtainfire inside the Ban’Thallow
Barrow Den.

Original Generated
I’m gonna start setting this up. Next one
goes to Marcy, further down the den.
Head down this corridor here and look
for her in the next main chamber.

There you have it. Of course the crystal
started glowing before the attack. I will
have to perform some further research in
the laboratory, but first I’m going to need
to go set the rest of the explosives. You
seem to know where that stuff goes. It’s
unfortunately hanging out in a safe in the
back of this barrow den. If you want me
to retrieve it, all you have to do is give
me your key. Of course, I won’t charge
you for the hassle.

Figure 7.9: Generated quest descriptions that were used in the evaluation survey, together
with the original dialogue as it appears in World of Warcraft. The quest title and
objective were selected randomly from the WoW dataset and used as a prompt
for the generator. All outputs were generated with a temperature of 0.9.

7

NPC dialogue generation from annotated video game quests | 143

The Bandit Warlord.
Slay Warlord Ihsenn.

Original Generated
Our law demands that those behind this
attack face proper retribution. The band
of bandits’ ringleader is a man known as
Warlord Ihsenn. You will find him in the
far west of the desert. Make sure his
transgressions do not go unpunished.

There is an enemy that exceeds even
Neferset that the guards are too weak to
handle, he is called Warlord Ihsenn. If
you kill him, perhaps I can retake Felfire
Hill.

A Well Rounded Defense.
The Facet of Keanna stored inside Keanna’s Will wants you to gather 20 Arcane
Residues from the Arcane Anomalies in Karazhan.

Original Generated
Offensive magic was my area of
expertise... that much I can remember. I’ll
do my best to add my arcane channeling
powers to yours. I’ll need more raw
power than I possess right now, however.
The arcane anomalies that roam the
upper levels of the guardian’s library
would make excellent targets. Gather
their arcane residue, we’ll need lots of it.

Our people have been fighting an endless
war against necromantic attacks, and we
cannot afford to stagger their resistance.
I want you to find and gather arcane
residue from arcane anomalies
throughout the city. I want you to take
this branding iron and release the broken
into the city to get a better look at the
matter. You will soon find that they are
everywhere, and you will find that they
generate a powerful explosion.

Figure 7.10: Generated quest descriptions that were used in the evaluation survey, together
with the original dialogue as it appears in World of Warcraft. The quest title and
objective were selected randomly from the WoW dataset and used as a prompt
for the generator. All outputs were generated with a temperature of 0.9.

7

144 | Chapter 7

Fashion History and a Philosophy of Style.
Learn from Eliezer Hammerbeard how to create “flair and drama” in your
wardrobe.

Original Generated
Greetings, <name>. I am a fashion
historian and I have astonishing
advancements in tailoring,
leatherworking, and blacksmithing that I
must share with you. Why? A true legend
is only as good as their ability to form an
epic silhouette on the battlefield and–let’s
be honest–this is not where you shine.
Speak to me again if you wish to learn.

My job as a tailor is to take your stuff and
make it look good. The way I see it, there
are two ways to get people to like you: 1.
Show them how good you are and 2.
Show them how good you are through
stylishly made clothes. I will cover both
in this class. Please come back to me
after this class and I will demonstrate
how to take ye best pieces and make ye
clothes that people want to buy.

In Dire Need.
Hear out the Council of Six in the Purple Parlor

Original Generated
The ill tidings you bear only increase the
concerns the Council has been having. I
know you have your hands full with the
Tomb of Sargeras. Make no mistake, the
battle for the tomb remains our top
priority–but we must not think the
Legion foolish enough to rely on brute
force alone. They are far more cunning
than that. Please, hear us out.

The Council has a rallying point all across
The Dreamgrove. There is an empty
throne oak in the purple parlor, and a
creature named Amalia should be there.
Unfortunately her days of being known
as a Gallywix-level concession vendor are
done.

Figure 7.11: Generated quest descriptions that were used in the evaluation survey, together
with the original dialogue as it appears in World of Warcraft. The quest title and
objective were selected randomly from the WoW dataset and used as a prompt
for the generator. All outputs were generated with a temperature of 0.9.

7

NPC dialogue generation from annotated video game quests | 145

Balance of Power.
Speak to Romuul’s assistants to collect an Optical Disc, Conducting Crystal, and
Romuul’s Wrench.

Original Generated
The Prophet needs to locate the arkonite
crystals, but in order to do that, I’ll need
to fix the projection discs on that
platform. Speak to my assistants around
the observatory and bring me an Optical
Disc, a Conducting Crystal, and my
wrench.

Sound difficult? We ought to be able to
get these books back to Kumul without
too much trouble. Don’t worry though,
I’ll make it worth your while. First, we
need to hide one of the books. We can do
that by giving it a nice, "Hey, you know
what? I got this one figured out, go
figure it out for me!" put down. Then we
need to get the books off our chests
before they get confiscated. There will be
a bunch of assistants nearby to
familiarize them with your face.

The Road to Purgation.
Accompany Kingslayer Orkus to Purgation Isle.

Original Generated
The time of vengeance has come,
<name>. Kasha can once more fly,
thanks to you. She will take us to
Purgation Isle so that we may confront
the Stormpike dwarf general, Vanndar
Stormpike, and his captain, Balinda
Stonehearth. BOTH will pay for what
they have done. Are you ready? Orkus
cannot do this alone.

It’s that time again. You’ve earned it. You
can finish off these hereers before they
make any strikes. Let’s go party.

Figure 7.12: Generated quest descriptions that were used in the evaluation survey, together
with the original dialogue as it appears in World of Warcraft. The quest title and
objective were selected randomly from the WoW dataset and used as a prompt
for the generator. All outputs were generated with a temperature of 0.9.

7.4.2 Results

32 participants filled in the online survey. For each participant the scores were
grouped into 2 categories: generated and hand-written. We calculated the aver-
age for each property, and conducted a sign test on the median as none of the
differences showed a normal distribution. Figure 7.13 shows the average score
per category for each of the five statements. Three properties, namely language
quality, coherence and novelty, were shown to be statistically significantly worse
in descriptions generated by the model, with p < 0.01. The two other properties,

7

146 | Chapter 7

surprise and creativity, did not show significant differences even with p < 0.05.
Even though the generator on average performs worse than human writers,

the results are encouraging because the differences in ratings are not very large.
The scores of generated quest descriptions for surprise and creativity are close to
those scores for the hand-written descriptions. This may be because of the high
temperature with which the quest description were generated. Similarly, the
differences in language quality and coherence might be due to the high unex-
pectedness of the generated texts, due to the high temperature setting used dur-
ing generation. We analyzed whether participant’s quest ratings were correlated
with the answers to the two questions about English proficiency or familiarity
with role-playing video games, but that was not the case.

Language
quality

Coherence Novelty Surprise Creativity
1

2

3

4

5

6

7
* * *

6.6
6.34

5.83

5.11

5.775.53

4.84 5.05

4.32
4.83

A
ve

ra
ge

ra
ti

ng
on

7-
po

in
t

Li
ke

rt
sc

al
e

Hand-written Generated

Figure 7.13: Average rating across evaluation properties rated on a 7-point Likert scale, for
hand-written and generated quest descriptions. We collected ratings from 32
participants. The ∗ denotes statistical significance with p < 0.01.

Figure 7.14 shows the distribution of the ratings across the different proper-
ties. For all properties, the generator is capable of generating outputs that score
higher than the median rating for hand-written texts. Sometimes the quality of
generated quest descriptions even exceeds that of handwritten examples, such as
in the case of the properties coherence and surprise. The inconsistency in qual-
ity of GPT-2’s outputs suggests that we should take a cherry-picking approach
to generation. Instead of generating one description, we could use the system to
generate multiple outputs for the same prompt, and select the best one. If we can
come up with a automatic metric for judging the quality of generated artifacts,
we could also use an automated generate-and-test approach. If the generator
should be used without any input from the user, generating texts with a lower

7

NPC dialogue generation from annotated video game quests | 147

temperature (e.g. 0.7) might improve the language quality and coherence of the
output, possibly at the detriment of creativity and surprise. As we can see in
Figure 7.6, texts generated with a lower temperature seem to be more consistent
in both spelling and informative content.

1

2

3

4

5

6

7

Language
quality

Coherence Novelty Surprise Creativity

R
at

in
g

on
7-

po
in

t
Li

ke
rt

sc
al

e

Hand-written Generated

Figure 7.14: Distribution of ratings per evaluation property for hand-written and generated
quest descriptions. 32 participants rated each property on a 7-point Likert
scale.

7.5 Discussion

Although the fine-tuned model creates outputs that score worse on all three prop-
erties, the described approach is a viable option for text generation for games.
Teaching GPT-2 a specific output structure by delimiting the training set and
prompts with unique tokens proved to be a success. Although the quality of
the results may be inconsistent across multiple outputs generated with the same
prompt, as shown in Figure 7.7, the outputs indicate that GPT-2 can learn the
structure and linguistic style of World of Warcraft quests. Moreover, the ratings
distributions show that the generator is capable of creating outputs that are on
par with human-written dialogues. A difference between human writers and our
fine-tuned model is that the generator can easily create large numbers of quest
descriptions from the same prompt. Once a GPT-2 language model has been

7

148 | Chapter 7

fine-tuned, creating large volumes of embryonic quest descriptions is fast and
low-cost. Letting a human user cherry-pick outputs with the highest quality, or
modify the most creative outputs, seems a feasible alternative to writing new
flavor text for RPG quests by hand. Finding the optimal generation temperature
could lead to additional improvements in output quality.

GPT-2 original training data WebText has an interesting side-effect. Since
GPT-2 was pre-trained on web text, it is likely that generated texts will contain
references to internet culture, such as memes, jokes and pop-culture references.
Some manually-written World of Warcraft quests also contain references to pop-
culture.6 Players that read the generated dialogue might conclude that the refer-
ences were introduced on purpose by the generator.

A weakness of the discussed approach is that the fine-tuned GPT-2 model
does not yet generalize to other role-playing games. Since we fine-tuned GPT-2
on World of Warcraft data, the resulting outputs contain references to the lore
of World of Warcraft, and the outputs are not easily transferable to other game
worlds. However, we imagine the model can be adapted to generalize in a few
ways. Firstly, we could try to create a more general model by preprocessing the
training data: if we substitute all named entities by a [LOCATION], [NAME] or
[FACTION] tag prior to fine-tuning, the outputs will become a lot more generic.
This process, called delexicalization, can be used to normalize datasets prior
to training a language model for neural generation, e.g. Castro Ferreira et al.
[56]. The placeholders in the data can then be filled with names and location of
another game world, either by hand or automatically. For the automatic substi-
tution, we could use a language model that performs well on the cloze test.

We might also try to translate outputs from one game to another using tech-
niques from neural machine translation in a post-processing step. For example,
we could try to translate game specific terms using distributional semantics, i.e.
by building a vector space of word embeddings using words from two differ-
ent games. For example, if it turns out that ‘Sith’ (Star Wars games) and ‘The
Burning Legion’ (World of Warcraft) are often used in the same context, these
words might appear close together in the resulting vector space. We could use
this information to substitute the word ‘The Burning Legion’ for the word ‘Sith’
in generated outputs.

We could also fine-tune GPT-2 on a heterogeneous dataset from different
video games, annotated with additional tags that denote the game world or game
genre of that datapoint. These tags could then be used to steer the model towards
outputs for a specific genre or game. A prerequisite for this approach is a var-
ied dataset that is large enough to capture significant differences in style and
content between games. Although no datasets of this type were available when
we performed this research, we will discuss work in this direction in the next
chapter.

6https://www.wowhead.com/news/pop-culture-references-in-wow-npcs-and-quests-from-
games-and-music-228084

7

NPC dialogue generation from annotated video game quests | 149

Other future work in NLP for video games could explore generation in the
opposite direction from what we did in this chapter, i.e. take dialogue lines as
prompt to generate a quest title and objective. This can be seen as a form of text
summarization, as the quest objective is often grounded in the dialogue.

Evaluating the impact of different temperature settings in a more rigorous
evaluation could also be useful, although it is doubtful whether these findings
would easily generalize to models trained on other (game) data.

Following the approach of fine-tuning GPT-2 on a training set annotated with
tags that describe the structure of input texts, we should explore whether we
can add additional annotation tags to the training set, for example for capturing
expressed sentiment and NPC–player relations. These tags could then be used
in prompts, so that we can exercise more control over generation by guiding
the generator towards outputs with desired properties. Using the largest GPT-2
model (1.5 billion parameters) might improve the language quality of the gen-
erated examples. However, if we start using larger pre-trained language models,
we must also investigate whether the size of the training set should be increased
proportionately, to prevent the larger model from undertraining on the anno-
tated game data. It would also be interesting to find out how large a dataset
of game texts should be, before it can be used to teach GPT-2 the structure and
linguistic style of game texts.

7.6 Conclusion

In this chapter we built on the work from the previous chapter, in which we fine-
tuned a GPT-2 language model for creating flavor text in games. In this chapter
we continued this exploration, this time working with video game data from a
commercial role-playing game as source material. We created a dataset with text
from World of Warcraft quests, and used an annotated version of this dataset to
fine-tune a GPT-2 model. We then used this model to generate new NPC dia-
logue for quest-giver NPCs in World of Warcraft. To evaluate our approach, we
compared generated quests to human-written quests on the properties language
quality, coherence and creativity. The evaluation results showed that the gener-
ator performs worse than human writers. However, the results are encouraging
because the differences in ratings are not very large. The scores of generated
quest descriptions for surprise and creativity are close to those scores for the
hand-written descriptions. Our results also showed that, in some cases, gen-
erated quests were rated higher than human-written quests on the properties
‘content’ and ‘surprise’. Using GPT-2 to generate a large volume of draft quests
and letting a human editor curate the results might be a viable alternative to
writing new quests fully by hand.

The system described in this chapter is open source. The training data and
generator used for the experiments can be found as a Google Colab environment
at https://jakub.thebias.nl/research/QuestGen/colab/.

7

150 | Chapter 7

Section 7.3.1 described our efforts to find a dataset with video game text that
was suitable for fine-tuning GPT-2. It was difficult to find such a corpus, since it
had to be large enough to effectively fine-tune the smallest model of GPT-2, con-
tain enough varied content to yield interesting results during generation. To use
our approach with special tags, we also needed a dataset with enough contextual
information to annotate the datapoints; a text dump of video game string literals
would not have sufficed for this reason. In the next chapter, we will address the
scarcity of video game corpora. We will discuss what the requirements are for
high-quality datasets, and investigate where we can find additional video game
corpora.

8

8
Collecting video game corpora

In the previous chapter, we saw that using GPT-2 can be a viable and low ef-
fort approach for generating flavor text. If we want to train Transformer-based
language models for generating flavor text, we need datasets with examples of
flavor text. However, datasets with video game text are scarce. In this chapter,
we investigate what the requirements are for datasets for training GPT-2, and
how we can create new suitable datasets with in-game text from commercial
video games.

The main contributions of this chapter are:

• A list of quality criteria for video game text corpora

• An analysis of where such corpora can be obtained

• Three datasets with game texts from popular video games, together with
examples of how these corpora can be used in research

This chapter is based on the following publications:

• Thérèse Bergsma, Judith van Stegeren, and Mariët Theune. “Creating a
Sentiment Lexicon with Game-Specific Words for Analyzing NPC Dialogue
in The Elder Scrolls V: Skyrim”. English. In: Workshop on Games and Natu-
ral Language Processing. Marseille, France: European Language Resources
Association, May 2020, pp. 1–9. ISBN: 979-10-95546-40-5. URL: https://w
ww.aclweb.org/anthology/2020.gamnlp-1.1

• Judith van Stegeren and Mariët Theune. “Fantastic Strings and Where to
Find Them: The Quest for High-Quality Video Game Text Corpora”. In:
Proceedings of the 2020 Workshop on Intelligent Narrative Technologies. Oct.
2020

8

152 | Chapter 8

8.1 Introduction

Most text generators for video games still use techniques from more than fifty
years ago, such as pattern-matching and string replacement. Newer methods
often need large amounts of data for training, but text corpora sourced from
video games are scarce. High-quality video game text corpora can be used as
resources for many types of research, including but not limited to text generation
for games. Moreover, if multiple researchers use the same corpus, this facilitates
comparison of their results and can lead to research advancements, for example
via the organisation of shared tasks.

In this chapter, we will show that there are many possibilities for creating new
video game corpora – if researchers know where to look, and spend some time re-
assembling in-game context of collected texts. In Section 8.2, we review existing
work on video game text corpora, and their applications in games and NLG re-
search. We then discuss the quality requirements for video game text corpora in
Section 8.3. In Section 8.4 we will describe two sources of game text data: game
files and online fan-communities. In Section 8.5, we will describe three datasets
with game texts. The datasets were sourced from three commercial role-playing
games: Torchlight II [222], Star Wars: Knights of the Old Republic [36] and The
Elder Scrolls [31]. Finally, we discuss possible applications, limitations and ideas
for future work in Section 8.6.

8.2 Related work

8.2.1 Datasets in games and AI research

Inspired by the NLP field, where sharing corpora for shared tasks is the norm,
games and AI researchers have started to share datasets to bring the research
field forward as well. Although they are termed corpora, a term normally re-
served for collections of text, most of these datasets do not contain game text,
but other types of game assets. Summerville et al. [259] collected a corpus of
video game levels in three annotation formats, which can be used for procedu-
ral content generation and level design analysis. This corpus can be used for
corpora-based procedural content generation, design analysis and style transfer,
e.g. reimagining a level from one game in a (game level) style of another game,
or generating variations of an abstract level in multiple game styles.

Anderson and Smith [7] created the Undergraduate Games Corpus, a dataset
of games to support research on machine perception of interactive media. The
games were sourced from student projects in an undergraduate game develop-
ment program. The dataset includes full games (including source code and game
assets) and metadata from several game platforms: Twine, Bitsy, Construct, and
Godot. A notable difference from other game datasets is that all games in the

8

Collecting video game corpora | 153

Undergraduate Games Corpus were appropriately licensed for use and redistri-
bution in research.

Various datasets with gameplay data have been released, for analysing player
strategies and training AI-systems that can play games autonomously. For exam-
ple, Lin et al. [170] created a dataset of StarCraft replays that can be used for
learning gameplay models. They also reviewed existing StarCraft datasets, and
proposed a list of quality criteria for gameplay datasets for machine learning.
Despite the differences in content, this research can be used as source of inspira-
tion for creators of text corpora: what makes these datasets usable, how are they
used by researchers after release, and what is ‘quality’ for datasets in games and
AI?

Guzdial et al. [123] used a crowdsource platform (Mechanical Turk) to col-
lect stories for their adapted version of Scheherezade [165], which can generate
complete IF games from a dataset of stories.

In machine learning research, a commonly held view is that ‘more data is
better’ [125], as opposed to having better algorithms or better data, and that
this determines whether certain problems can be solved efficiently with machine
learning. However, in their survey on procedural content generation with ma-
chine learning, Summerville et al. [258] argue that this does not hold for video
games, as game data do not typically share common data structure or semantics.
Consequently, data sources are only usable for PCGML within the same game or
game series, which leads to a data scarcity. The authors suggest multiple ways to
mitigate this problem, such as artificially enlarging small game content datasets
through corrupting (masking) parts of the data, deriving additional datapoints
from a single datapoint in the training data, e.g. multiple player paths through
the same video game level, and gathering data from a secondary source, such as
video.

8.2.2 Text generation for video games

Most research on generating textual game content uses either template-based
techniques [53, 177], rewriting techniques based on grammars [223, 119, 126,
117] or graphs [155]. The use of newer NLP techniques, which build on ma-
chine learning architectures, must largely still be explored in the context of video
games. A notable exception is the work of Walker et al. [280], who used statis-
tical machine learning to create language models of the linguistic style of movie
characters. The language models were used to generate dialogue with personal-
ity for SpyFeet, a prototype roleplaying game. The authors used film dialogues as
the basis for the linguistic models.

A recent game that does use newer NLG techniques, i.e. large-scale neural
language models, is text adventure game AI Dungeon [282]. Earlier versions of
the game uses OpenAI’s GPT-2 language model [209] to generate personalized
text adventures. The latest version uses GPT-3, GPT-2’s even larger successor.

8

154 | Chapter 8

The underlying text generator was trained on a corpus from the website ChooseY-
ourAdventure.com, a community around choose-your-own-adventure style story
games.

A limitation of current research is that generator systems are often not based
on or compared with material written by professional video game writers. For
the purpose of academic research, most researchers create their own games, tem-
plates or grammars, or ask research participants to create game texts in crowd-
source experiments [200]. An exception is when game developers publish in
academic venues about their own text generators, such as Grinblat and Bucklew
[119].

8.2.3 Text analysis for video games

We cannot separate text generation from text analysis, as text analysis can inform
generative systems before and after generation. Before generation, a generator
can use text analysis techniques to model the structure of its output by codifying
patterns observed in examples. After generation, text analysis can be used to
evaluate properties of the generated artifacts. Similarly, Summerville et al. [259]
list ‘discovering design patterns’ as one of the purposes of the Video Game Level
Corpus.

Heritage [128] applied corpus linguistics to video game data, to analyze how
gender is represented in video game text. To ensure a representative selection
of video game texts, the author selected random language samples from 10 AAA
video games published between 2012 and 2016. “AAA” is a term used by the
video games industry and the gaming community to denote video game titles
that require a large production and marketing budget [181]. The text from these
games was collected using a combination of extracting text dump files, using
existing fan transcripts, and transcribing parts of the game by hand.

Landwehr, Diesner, and Carley [156] scraped a corpus of World of Warcraft
quests from quest repository Allakhazam,1 and used this to analyse the cultural
and narrative elements embedded in quest text. Kybartas and Verbrugge [155]
presented an approach for quest generation by using graph rewriting techniques.
Their quest generator, called ReGEN, can generate new quests based on changes
in game state, making player choices more meaningful. To validate their ap-
proach in a quantitative way, the authors also proposed a metric for the quality
of a (game) narrative. They used this metric to measure the performance of their
quest generator compared to the quests of The Witcher and Elder Scrolls V: Skyrim.
The quest data for the two games was collected from game wikis. Schlünder and
Klabunde [233] analysed greetings in NPC dialogue transcriptions of Skyrim, and
proposed an algorithm for more context-sensitive greeting generation.

1https://wow.allakhazam.com/
Allakhazam’s World of Warcraft quest database was discontinued in 2013.

8

Collecting video game corpora | 155

8.2.4 Related text corpora

Video game text constitutes many different types of text. Depending on proper-
ties such as genre and gameplay, a game might consist of dialogue, narratives,
quests, and flavor text. By flavor text, we mean game text that has a cosmetic
purpose as opposed to a functional one. Text processing for the video games
domain can profit from NLP research that studies the types of text that we also
encounter in games, such as dialogue and stories. Text corpora for these types
of text are much more common, e.g. the CMU movie summary corpus [16] and
the ROCStories corpus [191] for stories, and the switchboard corpus [113] for
dialogues. However, the usefulness of these corpora for the video games domain
is limited, as results on these corpora might not be transferable to video games.
Story corpora might contain stories that consist of a few sentences, which is not
comparable to the interactive and complex narratives found in video games. Sim-
ilarly, real-world dialogue corpora might not be similar enough to video game
dialogue. Real-world dialogue transcripts are typically linear. This might dif-
fer considerably from NPC dialogue in games, which might consist of branching
dialogue to incorporate player choices or changes to the in-game world state,
such as the player’s relation with with different in-game factions. Game writers
often work within complex constraints that are related to video game develop-
ment practice. These constraints might not be reflected in corpora from other
domains. Game writers might be constrained in terms of utterance length, for
example because of voice acting requirements, limited player concentration, or
interface design (e.g. dialog box sizes).

8.3 Quality of video game corpora

If games research is to benefit from the recent developments in AI and NLP, high-
quality datasets of video game text are necessary. These corpora are useful for
analysis, training and evaluation. Recent neural architectures, such as GPT-2
and BERT, can be fine-tuned on small, domain-specific datasets to increase their
performance for specific domains or tasks. Video game text corpora can be used
for fine-tuning these systems specifically to video game texts, which is likely to
increase the effectivity of NLP techniques for the games domain. Additionally,
text corpora that contain some kind of ground truth data or labels can be used
for evaluating new techniques and systems.

Below, we propose multiple quality criteria for video game text corpora, sim-
ilarly to the list provided by Lin et al. [170]. The goal of this is two-fold. Firstly,
we have collected these corpora as foundation for future work in video game
text research. We want to be able to apply corpora-based generation using GPT-
2, which was demonstrated in the previous chapter. The technique for guiding
GPT-2 places specific requirements on the dataset. Secondly, we noticed that
quality criteria for research corpora are not always explicitly discussed in pro-

8

156 | Chapter 8

cedural content generation and NLG research. By explicitly naming our own
design criteria for the datasets discussed in this chapter, we hope to encourage
other researchers to do the same. Others can either use our list of requirements
as a starting point, or design their own requirements. Making corpus require-
ments explicit has as advantage that it makes the underlying research goals and
methodological choices also more explicit.

Richness Datasets should contain both game text and information about their
in-game context.

Representativeness Strings in the dataset should be written by professional
video game writers. Strings should preferably be sourced from popular
or well-known (commercial) games that have a substantial user base.

Diversity Datasets should reflect the diversity of the video games domain.

Portability Datasets should be shared in a portable plain-text format that does
not require special tools to read or modify.

We will elaborate on the four criteria below.

Richness

Researchers might be able to find ‘text dumps’ of popular games online, which
consist of strings from the game without any context. However, because game
text is typically dependent on the underlying game state, logic, and gameplay
rules, game texts are inherently context-sensitive. If we try to analyse a game text
in isolation, we cannot interpret it correctly. Consequently, game text corpora
should provide rich information about the context of each text. For example, for
dialogue lines, we need information about conversation participants. Which NPC
is saying what, to whom, and why? What is their relation to the player character?
Is a particular dialogue line part of a larger narrative (such as the main storyline)
or a story of minor importance (a side quest, an NPC backstory, flavor text)? Are
there specific conditions in which the text is shown, or explicitly hidden from the
player? Is there a specific order in which text is presented, or is the player free
to choose?

Another challenge is that corpora need labels or some other kind of ground
truth before we can use them for supervised machine learning and evaluation.
Although in most cases game texts do not have labels in the strict sense of the
word, we can use properties from the in-game context as ground truth. We will
discuss below how this applies to the datasets presented in this chapter.

The richness requirement is related to one of the desired properties of the
Video Game Level Corpus. Summerville et al. [259] mention under ‘Future work’
that it is desirable to have an exhaustive dataset with a lossless representation
of the game content. However, it is very hard to define what ‘lossless repre-
sentation’ means for assets of a particular game. It could mean including solely

8

Collecting video game corpora | 157

unmodified original game assets, at most in a more user-friendly format, or using
a representation that closely resembles the game assets as the player sees them
in-game. However, game assets are often not stand-alone data structures, and
hard to use for researchers due to their highly specialized file structures. It is
also complex to perfectly reconstruct a game asset’s in-game context, because
of the (often opaque) way a game engine assembles a collection of game assets
during runtime. Besides these considerations, the definition of losslessness might
differ per game as video game assets are highly heterogeneous

Representativeness

Some research uses corpora of video game text that are not representative of the
video games domain. These corpora might contain text sourced from research
games, text written by academics, or text crowdsourced from research partici-
pants. Ideally, video game corpora consist of text written by (professional) game
writers, sourced from real-world video games. Here, we mean real-world games
as opposed to prototype games or research games, which are also prevalent in
research but are generally shared with and played by a limited audience. This
requirement can be found in research that focuses on text analysis more than
generation.

Heritage [128] explicitly named representativeness of the language sample
as an important requirement. In the paper, the author spent considerable time
explaining the design of the corpus used for analysis. To ensure a representative
sample, the author filtered a top 100 list of most popular games for a particular
timespan, and took a random sample of the games that met all conditions.

Interestingly, other authors explicitly choose corpora that are not representa-
tive for the commercial video games domain. Anderson and Smith [7] included
games from undergraduate students in a game development program, which is
a more diverse population than the current population of professional game de-
velopers of AAA games.

Diversity

Diverse corpora are needed to reflect the diversity in games. There are many
different types of in-game texts: NPC dialogue, item descriptions, in-game lore,
puzzles and riddles, narration, flavor text, names, quests, tutorials and text from
graphical user interfaces. In practice, most researchers tend to work with data
from the same games, or the same corpora, e.g. in shared tasks. For example,
Morrowind and Skyrim, two games from The Elder Scrolls, are popular subjects
in video games research, e.g. for dialogue analysis [233], linguistics of fantasy
languages [94], quest generation and analysis [155] and social agents [66, 122].
It is unclear whether this is because of the series’ popularity, or the availability
of modding software. Similarly, Super Mario [268, 78, 260, 258], Minecraft
[230, 10] and Starcraft [269, 274, 162] are popular games in procedural content

8

158 | Chapter 8

generation research.
When a game is popular as an object of research, this can start a virtuous

cycle: resources for working with the game data are shared within a research
community, and other researchers can easily build upon this work, using datasets
or software as a starting point for new research. After a while, a particular
dataset might grow into a shared benchmark. Although using the same datasets
increases the ease with which we can compare different approaches, it also has
drawbacks. If research is limited to only one type of game text, it does not do
justice to the diversity of video games. Similarly, we need corpora that span
the diversity in game genres, narrative genres and game developer backgrounds.
Diversity is in the interest of the research field, as text processing methods might
not transfer across game genres, narrative genres, storytelling methods, settings,
writing styles and other aspects of game writing.

Anderson and Smith [7] use several dimensions of diversity. Apart from a
variety in subject matter, they also included games from a population of student
authors that is more diverse than the population of professional game authors.
The games also vary in their level of design polish. Anderson and Smith [7]
rightly note the paradoxicality of diverse corpora. On one hand, we need large
and diverse datasets. On the other hand, the contents of the datasets need to be
technically consistent and uniform, so that they can be used for training new AI
techniques without the need of data cleaning, generalization or abstraction.

Portability

Finally, to ensure portability, corpora should be shared in a plain-text data format
that is supported on a variety of platforms, such as CSV or JSON. In this we fol-
low Summerville et al. [259], who published their dataset in machine-readable
plaintext files, including a JSON legend for their annotation formats. The VGLC
also includes the original game level data, so that other researchers can create
their own annotations for the levels. However, this might not always be feasible
for game asset corpora, both for copyright and size reasons.

8.4 Obtaining new video game corpora

In this section we discuss methods for obtaining data that can be used as a source
for new video game corpora: extracting text from game files, and scraping text
from fan-websites.

8.4.1 Extracting text from game files

The highest quality data can be obtained directly from game files, as these con-
tain the actual text that players will see during the game. We discuss three
different approaches for this: extracting data from files of open-source games,

8

Collecting video game corpora | 159

using modding software provided by the publisher or developer, and using tools
provided by online modding communities. Since we want to collect datasets that
fulfill the representativeness property discussed above, we focus on real-world
games.

Extracting text from open-source games can be an accessible approach to ob-
taining game texts from real-world games. It is in the interest of the open source
community to make the inner working of the game, such as the game engine and
the structure of game assets, as understandable and usable as possible. Conse-
quently, files are often stored in open and human-readable formats, the structure
of game files and the working of the game engine is often documented, and
game files require no proprietary tools for inspection or modification. This is an
advantage if we want to extract data from them for analysis.

Open-source games exist in a variety of types. They can be original games that
were made available as open source from the start, such as Endless Sky, or open-
source clones of closed-source games, such as OpenRA2, an open-source clone
of Command & Conquer: Red Alert. Some open-source clones are shipped with
assets from the original game; others require the original game files. Besides
open-source games, there are also efforts to create open-source game engines,
such as xoreos,3 a project to opensource Bioware’s Aurora game engine. An
open-source game engine, and the accompanying tools, can help us extract game
assets from commercial games.

However, most games are not open source. Games files of commercial games
might be compressed, to save space and provide fast access for the game engine,
or even encrypted, to prevent tampering and theft. In that case, we can use mod-
ding software to access the files. As modding tools are created with modification
in mind, and not extraction, it varies whether it is possible to export (textual)
game assets in bulk.

It is becoming more common for game publishers to release official modding
software after the release of the game. Examples of games that come with their
own modding toolkit are Torchlight II (GUTS), Morrowind (TES Construction Kit)
and Skyrim (Creation Kit). The game’s publisher or game development studio has
an interest in the success of the official tools, as an active modding community
can improve the life expectancy of a newly released game [161].

Official modding tools are often based on the developer’s in-house tools. Con-
sequently, they tend to be more robust than their community-provided counter-
parts discussed below. Their biggest advantage is that they often integrate well
with the game engine and game files. Sometimes the publisher also provides ex-
tras that increase the usability of the tools, such as documentation and tutorials.

If the publisher has not released any tooling for modifying a game, or official
tooling is found to be too restrictive, the player community often starts making
their own tooling. Community-provided tools are shared online via modding

2OpenRA, https://www.openra.net/
3https://xoreos.org/

8

160 | Chapter 8

community websites (such as NexusMods), gaming forums, and gaming plat-
forms (such as Steam Workshop). Tools vary in sophistication from simple scripts
to professionally developed software with a GUI and documentation.

Relying on community-built tools has a few caveats. Not every game has
an active modding community, and there is no guarantee that a community-
provided tool will actually function correctly. Tools may be untested, undoc-
umented, or incompatible with newer computer systems. Finally, community-
provided modding tools might require a high level of technical proficiency of the
user.

8.4.2 Extracting game text from fan websites

Fan culture can give rise to extensive fan-made websites and wikis, where players
collect information about the game, discuss strategies and share fanart. Often
these fan-made websites are a great resource for texts (and other media) from
the game. Kybartas and Verbrugge [155] used the fan wikis of The Witcher and
Skyrim to obtain information about game quests. In a previous work [26], we
used in-game lore books and NPC dialogue sourced from The Elder Scrolls fan
websites for sentiment analysis research.

The main advantage of collecting data from fan websites is that the text is
already available in plain text, as opposed to text in game files, which might be
compressed, encrypted or stored in a proprietary format. A possible drawback is
that data from fan websites generally needs considerable data cleaning before it
is of comparable quality to data extracted from game files. Since fan wikis are
often crowd-sourced, we cannot be sure of the accuracy and completeness of the
text we find there. Information might be spread over various pages, or structured
in a heterogeneous format. Similar to other crowd-sourced online resources such
as Wikipedia, we might find text with errors ranging from spelling mistakes to
false information. Another drawback of extracting game text from fan websites
is that the texts might be presented without information about in-game context,
which is contrary to our richness requirement.

8.5 Datasets

We used the sources mentioned in the previous section to create three datasets
with game text. The texts were sourced from popular commercial games: Torch-
light II [222], Star Wars: Knights of the Old Republic [36] and games from The
Elder Scrolls video game series [31]. We used a different method for each corpus:
for Torchlight, we extracted the data using the publisher’s official modding soft-
ware GUTS; for Knights of the Old Republic we used community-built tools; and
the corpus with The Elder Scrolls text was scraped from fan-websites. The three
datasets contain a broad range of game texts: linear NPC dialogue, branching
NPC dialogue, quest objectives, GUI text, and flavor text. We briefly discuss the

8

Collecting video game corpora | 161

collection method and contents for each dataset. Our methods for extracting text
data from game assets do not generalise to other games, which is why we have
not included a detailed technical description of our data collection methods in
this chapter. However, we have provided detailed descriptions of our extraction
methods with the released datasets4 on Github.

8.5.1 Dataset: Torchlight II quests

An example of a game that comes with modding software provided by the pub-
lisher is Torchlight II. Torchlight II is an action role-playing game that takes place
in a fantasy world. The game consists of a main story that revolves around
the destructive and corrupted Alchemist, and a collection of randomly generated
dungeons that the player can explore as side-quests. The publisher, Runic Games,
has published their in-house development kit “GUTS”, together with a set of tu-
torials to teach players how they can change parts of the game and write their
own extensions.

Torchlight’s quests follow a similar structure as quests in World of Warcraft
and other MMORPGs. Quests in Torchlight often start with a dialogue with a spe-
cial quest-giver NPC. These NPCs can be identified by a yellow exclamation mark.
There is dialogue for starting and finishing a quest. When the player returns to
the quest-giver before finishing the quest, the quest-giver sometimes speaks in-
terim dialogue, e.g. “Are you finished running the errand yet?" or “Hurry! What
are you waiting for?" Quest dialogue might also contain hints about the quest
objective. Figure 8.1 shows the first quest the player encounters in-game, which
kicks off the main story line. The objective of this quest is to travel to the Esthe-
rian Enclave and warn the Estherians, one of the peoples that inhabit Torchlight’s
game world, against the Alchemist, the main antagonist of the game.

4https://github.com/hmi-utwente/video-game-text-corpora

8

162 | Chapter 8

Figure 8.1: Screenshot from Torchlight II [222] that shows the opening quest dialogue for
the quest titled ‘Warn the Estherians’.

Dataset creation

We used GUTS to extract all quests and related dialogue from the game files.
When Torchlight II is installed on a pc, its game assets are stored as XML-like UTF-
16-encoded plaintext files, which are compressed and stored in PAK archives. We
used GUTS to unpack Torchlight’s game files from its main PAK archive. We then
created a Python script to parse the XML files, extract the game text, and turn
this into a ready-to-use dataset with quest texts and associated NPC dialogue.
For accessibility reasons, we have created two datasets. The first dataset is a
straight-forward two-dimensional table that lists each line of in-game text and
relevant meta-data, such as information about the speaker. Figure 8.2 shows the
structure of this table, and describes the contents of each column. Figure 8.3
shows an example for all columns. The second dataset is a nested JSON file, that
closely resembles the structure of the original game files. Apart from dialogue
lines, this datset also contains the meta-data of each quest, which determines
when and how a player encounters this quest in-game. Both file-formats are
highly portable, as they consist of plaintext data that is compatible with various
tools and libraries.

In order to create the dataset, we combined data from two types of game
assets: quest files and unit files. Quest files describe events, story components
and dialogue. They are used to control the flow of the game narrative, and make

8

Collecting video game corpora | 163

Column name Description

Text The string literal of a piece of text.
Speaker If the text type is dialogue, this column lists the human-

readable name of the speaker (unit) of this piece of
text. Some lines do not have a speaker but just appear
in the game, as if spoken by an invisible narrator or
thought by the player character. GUI texts never have
a speaker. The dataset contains 83 unique speaker
names.

Dialogue type One of the text types from Figure 8.4.
Quest displayname The human-readable name of the quest, as it appears

in-game. Some quests are not “real” quests for the
player to solve but instead govern in-game animations,
checkpoints and passive dialogue. These quests are not
shown to the player and have an empty quest name.

Quest name Internal identifier of this quest as used by the game
engine. Every quest has an internal identifier like this,
and each unique identifier corresponds to one unique
game file.

Questfile The game file (.DAT files) from which the quest data
for this row was extracted.

Speaker unit Internal identifier of the speaker of this piece of text
as used by the game engine. Every speaker has an in-
ternal identifier like this, and each unique identifier
corresponds to one unique game file.

Unitfile The game file (.DAT files) from which the speaker data
for this row was extracted.

Raw text Un-edited, raw string for this line of text as it ap-
pears in the game files. These strings contain for-
matting information, such as |cFFA1D0FCTemple
Steppes|u, which tells the game engine to print this
piece of text in bold and in colour.

Figure 8.2: Dataset structure of the two-dimensional Torchlight II dataset in CSV-format. Not
every datapoint (row) has a value in every field.

up the main storyline, together with a set of side quests that revolve around
procedurally-generated dungeons. Unit files describe interactive in-game objects,
such as NPCs, items and doors. We used the unit files to translate abstract ref-
erences to NPCs and monsters (alphanumerical identifiers) in quests to human-
readable names.

8

164 | Chapter 8

Column name Example

Text Go on, then. Glory awaits!
Speaker Fazeer Shah
Dialogue type return
Quest displayname The Djinni’s Next Task
Quest name a2-djinni_2st_task
Questfile QUESTS/TL2MAINQUEST/ACT2/

A2-DJINNI_2ST_TASK.DAT
Speaker unit A2-DJINNI
Unitfile MEDIA/UNITS/MONSTERS/QUESTUNITS

ESTHERIANS/A2-DJINNI.DAT
Raw text Go on, then. Glory awaits!

Figure 8.3: Example datapoint from the two-dimensional Torchlight II dataset in CSV-format.

Dataset contents

The dataset of Torchlight II quests consists of 184 quests, of which 131 quests
contain text. Quests without text are used for controlling in-game objects, such
as doors and checkpoints.

Torchlight’s quest files can contain many different types of texts, such as NPC
dialogue, flavor text, back story and GUI text. Most of the texts are dialogue lines.
Whether a particular dialogue line is shown in-game depends on the player’s
progress for that respective quest. Quests might also contain flavor text. For an
overview of the different text types, see Figure 8.4. Figure 8.5 shows three lines
of dialogue from one of the side-quests in the game. The amount of dialogue
contained in each quest varies. Simple side-quests contain only a few lines of di-
alogue for one NPC, i.e. the quest-giver NPC that acts as the start and completion
point of a quest. Larger quests may contain dialogue lines for multiple NPCs.

The Torchlight II dataset consists of about 1000 pieces of text, of which ap-
proximately 70% is NPC dialogue. 27 datapoints contain a long-form story syn-
opsis that summarizes part of the main quest. The remaining datapoints are GUI
text, which describe quest objectives in one or two lines. Figure 8.6 shows the
exact number of texts for each category.

8

Collecting video game corpora | 165

Text type Text field Description

Dialogue intro Dialogue text of the NPC that introduces the
quest to the player.

Dialogue return Dialogue that the NPC speaks when the player
returns to the quest-giver before completing the
quest.

Dialogue complete Dialogue for when the player returns to the quest-
giver NPC after successfully completing the quest
objective. After this text, the player receives a
reward for completion of the quest, or is shown a
new intro text to start a follow-up quest.

Dialogue passive Stand-alone dialogue lines that act as flavor text.
GUI details The goal or objectives of the quest, as shown

upon quest acceptance.
GUI huddetails A list of quest objectives. This list is shown in the

game UI when the quest is active.
GUI more details Extra backstory for quests from the main quest-

line.

Figure 8.4: Text types in Torchlight II quest data, and their purpose in the game.

8

166 | Chapter 8

Text field Example text

intro Hello! I thought I heard a human moving around out
there. Listen, my name’s Medrus. I got ambushed by
some Sturmbeorn, and managed to get clear ... but
I got pretty badly injured in the process. I can treat
it, but I need some Merryweather Leaves. They grow
around here, but I’m too weak to look for them. Think
you can find some for me, bring ’em back here? You’ll
be rewarded, I promise.

return Any luck finding the Merryweather Leaves? I’m not
sure how much longer I can hold on ...

complete You found some! Oh, thank the gods. A few moments’
work, and . . . yes, there it is: a healing poultice. Now
it will just take a little rest, and I’ll be good as new.
As it turns out, you brought back more leaves than I
needed. So, here: a Healing Poultice for you, as a re-
ward. Should you be badly injured, it’ll set you right in
no time!"

details Collect Merryweather Leaves from a Merryweather
Bush, and return to Medrus, in the Temple Steppes.

huddetails - Gather Merryweather Leaves for Medrus in the Tem-
ple Steppes

huddetails_complete - Return to Medrus in the Temple Steppes

Figure 8.5: Text from the Torchlight II dataset for the sidequest “The Merryweather Poultice”.
The first three texts are NPC dialogue, and the last three texts are GUI text. This
quest does not contain the field ‘passive’, as the only character that has dialogue
related to this quest is the quest-giver NPC. The quest also misses the field
‘moredetails’, which only occurs in quests that are part of the main questline.

8

Collecting video game corpora | 167

Text type Text field Amount

Dialogue complete 83
Dialogue passive 449
Dialogue return 83
Dialogue intro 75
GUI text details, details_complete 136
GUI text huddetails, huddetails_complete 155
Story synopsis moredetails 27

1008

Figure 8.6: Text types and text fields in the Torchlight II dataset, and the number of texts of
that type.

8.5.2 Dataset: Knights of the Old Republic dialogue

Star Wars: Knights of the Old Republic (KOTOR) is a turn-based action RPG
by BioWare [36]. The game, which is set in the Star Wars universe, is known
for its high-quality writing, complex narrative and branching dialogues. During
conversations with NPCs, players can choose from a set of pre-written dialogue
options. Depending on their choices, different things happen in the game. Player
choices affect the player character’s abilities, NPC relations and story endings.

KOTOR’s dialogues are highly subjective and affective. The game story deals
with the battle of the good Jedi against the evil Sith, and conversations in the
game reflect this theme: dialogues do not only revolve around collecting in-
formation, but also around feelings, relationships, and complex moral choices.
Because of this, the dataset contains many different dialogue acts: characters
joke, fight, grieve, lie, bargain, persuade and fall in love with each other. For an
in-depth discussion of KOTOR’s narrative, we refer the reader to [284, p. 59–69].

Figure 8.7 shows an example of Knights of the Old Republic’s branching dia-
logue. This dialogue is encountered when the player is trying to infiltrate a Sith
military base on the planet Taris. Upon entering the base, they are stopped and
questioned by the receptionist. The player can choose from multiple dialogue op-
tions to try to persuade or threaten the receptionist, see Figure 8.8. The dialogue
is branching, but there are only two possible outcomes – the receptionist either
raises the alarm, or flees – and the outcomes don’t influence the larger narrative.
However, if the player manages to persuade the receptionist, this has a strategic
advantage. If the alarm is raised, the player immediately has to fight a group of
Sith soldiers. If they manage to invade the base stealthily, the player can take the
soldiers in the Sith base by surprise.

8

168 | Chapter 8

Char. Text Next line

1 T Hey - you can’t come in here! This is a restricted area!
You better tell me what you’re doing or I’m going to
hit the alarm!

2A, 2B, 2C, 2D

2A P [Persuade] I’m here for a meeting. Don’t worry - I
know where I have to go.

3

2B P [Persuade] I work here - look, I’ve got an access card. 3
3 T [Failure] Nice try. What - you think that just because

I’m pretty I’m also stupid?
4

4 T You better tell me why you’re here or I’ll hit this alarm
and you’ll have about three seconds before this office
is swarming with Sith soldiers!

2A, 2B, 2C, 2D

2C P [Persuade] Look, here’s 50 credits - just don’t hit that
alarm.

6A, 6B

6A T [Success] 50 credits? You’ve got a deal! The Sith have
made my life a living hell ever since they took over
this base.

7

7 T You know, it’s about time someone stood up to these
Sith! Just do me a favor and wait until I’m out of here
before you start blasting the place up.

Dialogue ends:
receptionist
flees.

6B T [Failure] You must think I’m pretty stupid! If I take
your bribe the Sith will have me executed!

8

8 T I don’t know what you’re up to, but I have the feeling
it might get me in a lot of trouble. I hate to do this,
but you’ll have to explain yourself to the guards.

9

9 P Don’t hit the alarm. I don’t want to have to hurt you. 10
2D P Touch that alarm and you’re dead! 10
10 T Don’t shoot! I just work here - I never wanted any part

of this! I would have quit when the Sith took over, but
they wouldn’t let me!

11A, 11B

11A P Okay - get out of here and I’ll let you live! 7
11B P You’re in the wrong place at the wrong time. It’s bad

luck, but I still have to kill you!
12

12 T You shouldn’t threaten a girl who’s got an alarm right
at her desk!

Dialogue ends:
alarm is raised

Figure 8.7: Branching dialogue from Knights of the Old Republic between the player char-
acter (P) and the Twi’lek receptionist (T) of a Sith military base. The dialogue
has two possible outcomes: the receptionist either raises the alarm (line 12) or
flees (line 6). Lines 2 and 11 are choice moments for the player. Line 6 features
Persuade, a skill that the player can use. Depending on the outcome of that skill
(a diceroll), the next line is either 6A [Success] or 6B [Failure].

8

Collecting video game corpora | 169

Figure 8.8: The player character (in red) infiltrates a Sith military base and is stopped by the
Twi’lek receptionist. The player can choose how they will react to her challenge.
Screenshot from Star Wars: Knights of the Old Republic [36].

Dataset creation

Text from KOTOR is not easily accessible outside the game, since the game assets
are stored in compressed archive files in a proprietary format. We extracted all
game assets with text using xoreos-tools, a collection of open-source mod-
ding tools5 provided by the Xoreos project. Xoreos6 is an ongoing open-source
project to reimplement publisher BioWare’s Aurora game engine. We developed
a collection of scripts in Python and bash to parse and re-assemble the game files
from the extracted files. The scripts reconstruct all dialogue trees from the game
to create a dialogue corpus in CSV-format. For a technical description of the ex-
traction and re-assembly of the dialogues, we refer the reader to our dataset on
Github.7

Dataset contents

To construct the Knights of the Old Republic dataset, we used a similar method
as for the gamefiles of Torchlight II. KOTOR’s dialogue texts are stored in special
dialogue files. Each text represents one conversation turn in a dialogue. KOTOR
contains branching dialogue with a graph-like structure. Intuitively, branching
dialogue has a tree structure, but KOTOR’s dialogues contain cycles. These allow
the player to go through the same dialogue multiple times, for example to ask a
NPC to repeat information.

5https://github.com/xoreos/xoreos-tools
6xoreos: an open-source reimplementation of the BioWare Aurora Engine. https://xoreos.org/
7https://github.com/hmi-utwente/video-game-text-corpora/

8

170 | Chapter 8

Knights of the Old Republic’s dialogue files describe branching dialogues as
a linked list. Each line of text refers to the lines that come afterward, together
with a set of logical constraints for each transition. If the constraints are fulfilled
in the game’s current world state, the next line of dialogue becomes active.

However, even if we have access to dialogue files, they cannot be read as
is. Dialogue files only contain identifiers, which refer to characters, maps, string
literals, or game files, instead of the actual data. In order to obtain the dialogue
lines as a player sees them in-game, we had to translate the identifiers back to
the actual data. We combined the data from dialogue files (.dlg files) with the
data from Knights of the Old Republic’s string lookup-file (.tlk files). We also
wanted to know who is speaking which line of dialogue. To get human-readable
character names, we also combined the dialogue lines with information from
character files (.utc files). Some dialogue lines also contain animation codes for
one or more dialogue participants. Animations govern facial expressions (looking
sad, looking angry, laughing) and character actions (taunt, walk, torture).

The reassembled dataset contains over 25,000 lines of dialogue of 556 uniquely-
named dialogue participants (listeners and speakers). The dataset contains 3305
dialogue tree root nodes, i.e. dialogue lines where the player or an NPC starts a
conversation. Besides conversations between multiple humanoid characters, the
dataset also includes interactions between the player and droids (robots), secu-
rity systems, doors, and other interactive game objects, as the game represents
these interactions as dialogue lines. For example, if the player interacts with
a droid, the droid might “reply” with “This droid is damaged and inactive” or
“Whirr. Click. Beep. Boop.” Since it is text data from the game’s .dlg files, we
decided to keep these object interactions in the dataset.

Each datapoint in the dataset describes one turn in a conversation between
two or more characters. Besides the dialogue text, the dataset contains the name
of the speaker, the name of the listener (optional), the dialogue tree (references
to other dialogue lines), which character animations should be played during the
dialogue line, and game developer comments. For an overview of the information
included in each datapoint, see Figure 8.9. Figure 8.10 shows basic statistics for
this dataset.

8

Collecting video game corpora | 171

Key Description Example value

Id 28209 Identifier of this dialogue act in the
dataset

Speaker Judge Shelkar The character or object that
communicates the line

Listener Player The character that listens to the
line

Text For your crimes against
Manaan and the Selkath
you are banned forever
from this world, on pain
of death!

String literal

Animation ‘Judge Shelkar’:
‘Talk_Forceful’

3D animation that should be
played during the delivery of the
line

Comment if the player is exiled Game development notes
Previous [28208, 28252, 28314,

28332]
Identifiers of previous dialogue
lines

Next [28210, 28213, 28215,
28218]

Identifiers of possible follow-up
dialogue lines

Source DLG man26_pcexile The .dlg file in which this
conversation turn can be found.

Figure 8.9: Datapoint (conversation turn) from the KOTOR dataset. Dialogues consist of
multiple turns. Dialogues are stored as double linked list and can be recon-
structed by walking the linked list, i.e. following the ‘previous’ and ‘next’ refer-
ences.

Conversation turns 25572
Uniquely named characters 556
Dialogue root nodes 3305
Dialogue end nodes 4157
Dialogue lines with animation data 2207

Total .dlg source files 984
Total .utc source files 830

Figure 8.10: Statistics about the Knights of the Old Republic dataset.

8

172 | Chapter 8

8.5.3 Dataset: The Elder Scrolls documents

The Elder Scrolls (TES) is a series of role-playing video games by Bethesda Soft-
works, consisting of single-player role-playing games Arena (1994), Daggerfall
(1996), Morrowind (2002), Oblivion (2006), Skyrim (2011) and multiplayer on-
line game The Elder Scrolls Online (2014). Games in the series are open-world
games, which means the player can explore the game world at their own pace
and choose which objectives they want to focus on. The games take place in a
fantasy world called Tamriel, which has a rich history that is communicated in
various ways throughout the game: through NPC dialogues, quests objectives,
cut scenes, and in-game documents, such as books and notes.

This last category of books and other written texts plays an important role
in the game. These documents are collectible objects that the player can find as
they travel through the world. Books can be opened and read by the player, as
shown in Figure 8.11. The books contain flavor text, i.e. text that is not a critical
part of the game’s main narrative, but gives the player background information
about the world they are exploring. Their length varies from a few words to a
few hundred words, and some books are part of a series of multiple volumes.

Figure 8.11: Screenshot from Morrowind (2002). This is what a player sees when reading
the in-game book ‘Special flora of Tamriel’, a handbook on the medicinal uses
of various plants and funghi that occur in Tamriel.

The importance of books can be felt throughout the game world. Cities in
the game have bookshops, libraries and record halls. Figure 8.12 shows the

8

Collecting video game corpora | 173

library of Vivec, one of the major cities in the game Morrowind. Some books
are deemed dangerous by local rulers, for example because they criticize the
state religion, and consequently forbidden. In the questline for the Morag Tong,
Morrowind’s guild of assasins, the player can obtain ‘writs of execution’: licenses
that authorize them to perform sanctioned executions, similar to the letters of
marque used by privateers in the 17th century. In Skyrim, multiple quests involve
obtaining rare books and manuscripts for the Mage’s Guild librarian.

Figure 8.12: The library of Vivec, from Morrowind (2002)

Dataset creation and contents

The Imperial Library8 is a fan-website for The Elder Scrolls, which collects in-
game documents from the series. We scraped the text of over 4800 in-game
books, letters and notes from the website. The final dataset consists of 4890
documents (at least 4470 unique titles) from six games. Together, they form a
corpus of over 160,000 sentences and 2,000,000 tokens. The Imperial Library
website also lists metadata for the in-game documents, such as title, fictional
author information, and a short summary of each document. We included this
metadata in the dataset as well. For an overview of the structure of the data and
an example, see Figure 8.13.

8https://www.imperial-library.info/books/all/by-category

8

174 | Chapter 8

Key Description Example value

Game The game from
which this document
is sourced.

Morrowind

Url The url of the
original webpage

https://www.imperial-
library.info/content/dying-mans-last-words

Author The (fictional) author
of the document

Indie

Title The title of the
document

A Dying Man’s Last Words

Summary Summary of the
document, written by
fan-site contributors

The last words of a world-renowned
archaeologist.

Text Text of the document It’s been many days since the collapse. I
have had many good and exciting
adventures. I fear this is the last. I am still
unsure what happened. Was it a trap that
caused the collapse? I didn’t hear the click
of any device. Perhaps it was simply a freak
accident, and I was simply in the wrong
place at the right time. (...)

Figure 8.13: Datapoint from the The Elder Scrolls dataset for A Dying Man’s Last Words, a
book in diary form. The book contains references to the Indiana Jones movies.
It can be found in a burial tomb, next to a skeleton grasping for a ruby.

8.6 Discussion

8.6.1 Applications

Video game text corpora can be used for a variety of purposes. Summerville
et al. [259] name three purposes for their Video Game Level Corpus: corpora-
based procedural generation, design analysis and style transfer. These applica-
tions also apply to the corpora presented in the previous section. Carrillo Masso
[55] and Heritage [128] used video game text corpora to analyze the represen-
tation of gender in commercial video games. Although our three corpora are
highly specialized because they only focus on one game (series) each, they can
be used to explore the same type of research questions. All three datasets could
be used to investigate the morphological and onomastic properties of toponyms,
as researched by Fekete and Porkoláb [94], as they contain names of in-game
locations. The names would still need to be extracted, but we estimate that re-
cent named entity recognition methods could be used to automatically detect

8

Collecting video game corpora | 175

place-names.

Because the datasets differ in included text types and size, they lend them-
selves to different types of research. We will discuss a few ideas for applications
for the specific datasets below.

The Torchlight II quest dataset contains text type annotations, which can be
used to filter specific types of text by in-game purpose. For example, since we
can distinguish between quests from the main quest line and side quests, we
can use this dataset to study the differences between these quest types. If we
are researching flavor text, we can look at quest objects that contain ‘passive
dialogue’. Another example is quest objectives. Quest objectives are very short
summaries of the task the player should perform to complete the quest. This
task is also described in the NPC quest giver opening dialogue, albeit with more
words and more flavor than the objective. This means that we can use the list of
quest objectives as ground truth for summaries of quest introduction dialogue.
This data combination could be used to evaluate summarization techniques from
the NLP field, to see how well these techniques perform in a video games context.

In contrast to the Torchlight II dataset, the Knights of the Old Republic dataset
consists of only one type of text: dialogue. We can use it to analyse and generate
both linear and branching dialogue. The main strength of this dataset is its size,
in terms of total lines of dialogue, the different speakers, and the breadth of the
covered topics and sentiments. Because the lines were directly extracted from
a game that is known for its high-quality writing, the dataset can be considered
representative of commercial video game writing. As a result, this dataset can be
used for style analysis, and training dialogue generation systems where the envi-
sioned application domain is video games. The dataset has been annotated with
speaker and listener information, and some conversations involve more than two
characters, so the dataset can be used for multi-party dialogue generation. Ad-
ditionally, the dialogues can be used for analysing character relationships and
sentiment. It can also be used to study the writing of a particular genre or set-
ting, in this case science fiction and the Star Wars universe. Because of the high
number of domain-specific fantasy words, the dataset can also be used to evalu-
ate NLP techniques for domain-specific languages or low-resource languages.

The Star Wars dataset contains 2,207 dialogue lines that are annotated with
animation data, that indicate which character animations should be played dur-
ing the delivery of the dialogue line. Although less than 10% of the dataset is
annotated this way, the animation annotations are particularly rich because they
convey actions and mental states, such as intent or emotions, of game characters.
In other words, we could interpret some of these annotations as affective labels.
Figure 8.14 contains an example of a dialogue where the lines have animation
annotations. The dialogue lines with affective labels can be used for sentiment
analysis and affective text generation.

8

176 | Chapter 8

Id Speaker Text Animation

28181 Mandalorian You’ve been holding out on
us again. Since you
haven’t given us enough
money, I guess we’re going
to have to take it out of
you piece by piece!

Mandalorian: Taunt
Farmer: Horror
Duros Warrior: Talk
Laughing

28182 Farmer No! Please! Take my wife
and children instead!
Anything!

Farmer: Talk Pleading
Mandalorian: Ready
weapon

The Mandalorian shoots the farmer

28183 Mandalorian Ha-ha! Mmm... Wife and
children. Sounds like a
good idea...

Mandalorian: Victory
Duros Warrior: Talk
Laughing
Duros Warrior : Talk
Laughing
Duros Warrior: Talk
Laughing

Figure 8.14: Reconstructed dialogue from the Knights of the Old Republic dataset. This
dialogue is taken from a cut scene in which bandits, a Mandalorian and multiple
Duros aliens, harrass a farmer on the planet Dantooine. All three lines contain
animation data. Every turn has only one possible successor, so this dialogue
is linear.

Because this dataset is so large, we can use it as a basis for smaller, task-
specific datasets. For example, we could filter the dataset for questions and an-
swers by searching for dialogue trees with question marks. We could also filter
dialogues with personal histories (search for sentences with high sentiment and
subjectivity scores), jokes (lines with ‘laughing’ animations), or requests for help
or mercy (lines with a ‘talk pleading’ animation).

The Elder Scrolls dataset with in-game books consists of flavor text that de-
scribes the game world that the player’s character inhabits. It can be used to
study the structure and contents of game lore and game settings. This can be
used for analysis, like in the research of Landwehr, Diesner, and Carley [156], or
for generating new game lore [119, 126].

The in-game books are interesting to analyse because of the way they explic-
itly inform the player about the game world, which differs from dialogue. The
dialogues from Torchlight II and KOTOR mostly implicitly describe their setting.
In KOTOR, players should derive the meaning of words like rancor (a monster),
droid (robot) and vibrosword (a melee weapon) from their context, as these terms
are not explained in the game. This differs from the books in The Elder Scrolls,

8

Collecting video game corpora | 177

which explicitly describe the game’s high-fantasy setting through fictional refer-
ence works such as dictionaries, maps, manuals, cookbooks and histories.

Because of its size, the dataset can also be useful in cases where a relatively
large corpus is needed for machine learning. For example, in an earlier work
[26], we used a preliminary version of this dataset for sentiment analysis on
game texts. We created a language model from the lore text to learn the implicit
relations between English words and non-English words from the games’ setting,
which was then used to adapt a sentiment analysis lexicon for English to the
domain of The Elder Scrolls.

8.6.2 Limitations

The Star Wars dataset was the most complex to create, as we needed to combine
several game assets to access the dialogue lines. Understanding how these game
asset files are interwoven required some reverse engineering, which is error-
prone. Extracting the dialogue data of the game was relatively straightforward
using the utilities of the xoreos project, but reconstructing the dialogue lines as
the player sees them in-game proved challenging. Consequentially, the dataset
might not be complete. KOTOR’s master file with strings contains all 49,265
strings from the game, of which 48,000 strings are non-empty. However, when
we reconstructed the dialogue, we ended up with 25,575 lines. This means that
more than 20,000 strings from the game are not part of our dataset. In-depth in-
spection showed that these other strings include (among others) error messages,
menu and button texts, item flavour text, quest objectives, attack names and de-
scriptions, character properties and abilities, help text, and text from tutorials
and demos. To obtain a complete dataset, we could easily make a string dump
of the master file, but this does not provide us with the context of those strings
in the game.

Some of the books in The Elder Scrolls contain images, such as treasure maps,
and the picture book ’ABCs for Barbarians’. We did not scrape the related images,
and did not include these in the dataset.

8.6.3 Future work

For the creation of the Star Wars dataset, we only used the character files and
dialogue files. By reconstructing game context from the other game files, such as
the maps, mission files, item files and audio files, other datasets could be created,
both textual datasets annotated with additional in-game context and datasets for
other modalities. To give a concrete example, many dialogue lines are governed
by game scripts (.nss files) with conditional logic. It would be useful to know
the exact logical preconditions for all dialogue lines. These conditions are of
the form “The player character has the Scout class”, “The player has at least X
dark side points”, “The player chose to free the NPC earlier in the game” or “The
player succesfully finished mission Y”. We could find references to these scripts

178 | Chapter 8

in the .dlg files, but we did not manage to automatically extract the contents of
all these scripts and link them to the dialogue lines. It would also be useful to
expand the dialogue lines with additional information about the speaker, such as
their gender, (alien) race, faction, and moral alignment. This information could
be obtained from the character files.

The Knights of the Old Republic game files also contain many examples of
flavour text, especially for quests and items. Extracting the quest text for Star
Wars quests would bring the dataset closer to the Torchlight dataset, which would
allow for cross-training a language model on both datasets, and experiments re-
lated to transfer learning. A language model could be trained on data from
one game, and then prompts could be generated with in-game context from the
other dataset. Flavor text for in-game items could be used for corpus-based pro-
cedural generation of item descriptions. The outputs of such a generator could
be compared to combinatorial procedural generation with grammars, a popular
technique for procedural item generation in AAA games, e.g. Diablo [40].

In theory, the method we used to extract the dialogue from KOTOR could be
applied to all video games that use Bioware’s Aurora game engine, using the open
source toolkit provided by xoreos. The xoreos website has a list of all supported
games, which includes popular narrative-heavy games such as The Witcher [59]
and Dragon Age [34]. We estimate that small changes to our extraction method
will be necessary because of the minor changes to game engines between game
development projects of the same studio. Still, this could be a viable alterna-
tive to crowdsourcing this information from fan-websites, which is the standard
method for text from these games, e.g. [155, 128].

8.7 Conclusion

In this chapter, we discussed our requirements for video game text corpora: rich-
ness, representativeness, diversity and portability, and contrasted these to the
requirements we find in other research. We described the places where source
data for building new corpora can be found, namely in game files and on fan
websites. Video game text is not always easily accessible, even if we have direct
access to the original game files. Three categories of games for which this prob-
lem is solved or mitigated are open source games, games with official modding
software, and games with an active modding community. When looking to cre-
ate new corpora, we advise researchers to look in these places first. Finally, we
presented three ready-to-use datasets with text from a number of popular role-
playing games. These datasets can be used for various applications, such as NPC
personality modeling, sentiment analysis, dialogue generation, lore generation,
and quest generation. The three datasets are available online, together with the
code used for extracting the data: https://github.com/hmi-utwente/video-gam
e-text-corpora. Anyone that has access to the game files (i.e. owns the game) of
the respective games can use the code to re-create the datasets.

Part III

Conclusion

9

9
Conclusion

This thesis investigated text generation for video games, especially flavor text for
role-playing games. In this chapter, we will start with briefly summarizing the
thesis in Section 9.1. In Section 9.2 we will revisit the research questions from
the introduction and reflect on our findings. We will finish with discussing some
ideas for future work in Section 9.3.

9.1 Summary

As we stated in the introduction, this thesis contains work on procedural gener-
ation of textual game assets. Chapter 2 and 3 discussed the relevant literature
on procedural content generation and natural language generation, respectively.
Video game text is context-sensitive, and thus we need to incorporate video game
context in generated assets. For this, we introduced the term game-level coher-
ence, i.e. textual coherence at the video game level, in addition to local and
global coherence. To date, there has been little research in this direction, so it
is challenging to find work on which we can build. However, video game text
tends to be fictional, which is why video game text generation is close to fiction
generation.

In Chapter 4, we analysed story generation projects from NaNoGenMo 2018
to find text generation methods for creating coherent novel-length texts. We
identified four approaches: hardcoding a narrative, hardcoding narrative ele-
ments, emergent narrative, and methods that evoke the feeling of a coherent
text. A common critique from the procedural generation community on natural
language generation tools is that they are too complex to understand or use for
non-experts. To address this problem, we specifically looked for methods that
are computationally light-weight and easy to understand. Especially the ‘evoking
coherence’ approach, which frames generated text in such a way that the reader
will perceive it as plausible, seems particularly useful given this goal. If we can

9

182 | Chapter 9

integrate the tricks mentioned in this chapter in procedural content generation,
we might be able to influence the reader’s perception of procedurally generated
game assets, even if they are created by unsophisticated text generation tech-
niques.

We tested this in Chapter 5 with the creation of Churnalist, a flavor text gen-
erator that creates headlines from a short piece of input text. The ‘evoking co-
herence’ trick that we used for Churnalist is word reuse. The hypothesis was that
if Churnalist reuses words from the input in its output, readers will perceive the
resulting headlines as coherent with the input text. Churnalist generates ‘new’
headlines using text substitution, a technique that is straight-forward to imple-
ment, fully transparent, and easy to understand for non-experts. Our evalua-
tion results confirmed that indeed readers perceived those headlines that reused
phrases from the input as more coherent than headlines without phrases from
the input. Churnalist’s language quality was rated significantly worse than those
of human written headlines, which might be a limiting factor in whether the
outputs were rated plausibly part of a video game in the functional evaluation.

We tried to mitigate the language quality problem in Chapter 6, where we
modified Churnalist to include a large-scale neural language model instead of
rule-based substitution. This language model was based on recent neural model
GPT-2, which can create coherent texts using its latent knowledge of the En-
glish language. Our model was fine-tuned on a dataset of headlines to learn the
language that is specific to newspaper headlines. We experimented with guid-
ing the language model towards generating headlines with words that occur in
Churnalist’s input text, by conditioning it on an implicit generation task during
training. An error analysis showed that the language quality of Churnalist’s out-
puts improved dramatically when generated with the GPT-2 model. However,
the neural language model had difficulty dealing with non-English words in the
prompts. Non-English words are common in game narratives with a fictional
setting, e.g. fantasy or science fiction games. We estimated that fine-tuning
or cross-training GPT-2 on video game text might mitigate this problem in the
model, as fine-tuning on game text can teach GPT-2 the latent semantics of these
non-English words, making the model more robust.

In Chapter 7 we tested this hypothesis by finetuning GPT-2 on video game
text. We searched online for potential ways to create a new corpus, which should
be large enough to train GPT-2 and contain contextual meta-data. The meta-data
could then be used to teach GPT-2 an implicit NLG task, and guide the generator
to an output with desired properties, similar to the headline generation task
from Chapter 6. We eventually decided on a dataset with World of Warcraft
quest data scraped from a fan-website. This new dataset was used to create a
neural model that can be used to generate World of Warcraft quests, using a
title and objective as prompt. We evaluated a collection of quests created by the
model on language quality, coherence and creativity, and found that generated
quests were rated slightly worse than manually authored quests. However, once

9

Conclusion | 183

the language model was trained, it could create large volumes of text without
additional effort, and the evaluation showed that some generated quests were
rated higher than quests created by human writers. This suggests that a generate-
and-curate strategy could be a worthwhile approach for supporting game writers
in their creative work.

The combination of a neural model with latent knowledge of English, and
conditioning the neural language model on a specific generation task seems a
worthwhile direction for procedural content generation for video games, pro-
vided we can find the data to condition the neural model on. In order to teach
the model a generation task, we need to have meta-data that describes what kind
of output we want. Generating video game text that fits within a specific game
context requires training data that includes this information. However, video
game corpora are scarce to begin with, even without additional contextualiza-
tion. In Chapter 8 we extended the data collection method from Chapter 7: we
investigated where similar datasets could be found, and what good properties
for those datasets would be. We showed how we can obtain video game texts
using different approaches: from original game files or from fan-websites. If
a game is open source, its texts can often be extracted directly from the game
files. If the game is not open source, we can try to obtain game texts using ei-
ther official, publisher-sanctioned modification software, or tools created by the
video games modding community. We also presented three new datasets ob-
tained via these approaches. The datasets contained text from three commercial
role-playing games: all in-game text from Torchlight II, dialogue from Star Wars:
Knights of the Old Republic and in-game books from The Elder Scrolls. The
datasets can be used for a variety of applications in NLP and NLG, included style
analysis, linguistic analysis, sentiment analysis, research on gender and (fantasy)
race representation, branching dialogue generation and quest generation.

9.2 Revisiting the research questions

Section 1.5 stated the following research goal for this dissertation:

Research goal. To investigate and develop methods for generating coherent flavor
text for video games, while keeping in mind the risks and costs.

This research goal was the common thread throughout the work of this thesis.
The goal was implemented via a set of research questions. We will now answer
these research questions using the findings from this thesis.

As stated in Section 1.3, the existing work on text generation for games is
limited. Since flavor text is fiction, we started by investigating the existing meth-
ods for generating coherent works of fiction. We then assessed whether we can
transfer these methods from the domain of fiction to generating coherent flavor
text.

9

184 | Chapter 9

RQ 1. Which methods have been used in the wild for generating coherent works of
fiction?

This question was answered in Chapter 4, where we analyzed the contribu-
tions of text generation challenge NaNoGenMo 2018 as a case study. As we saw
in the introduction, some procedural generation techniques are hard to use in
practice, for example because of lack of transparency, required expert knowledge
or operational cost. We specifically looked at techniques used in NaNoGenMo
contributions to make sure the techniques were easy to use in practice. The
challenge runs only for 30 days, which precludes generators that are overly com-
plex or labor-intensive to build, and most participants are not natural language
processing experts.

We found that NaNoGenMo text generators that could create coherent long-
form narratives used one of four approaches: hardcoding the full narrative in a
domain-specific language, hardcoding parts of the narrative, such as a beginning
or ending, creating emergent narrative from rule-systems, and evoking a sense
of coherence by playing with the expectations of the reader.

Of course, the findings of this chapter only represent a snapshot of one cre-
ative community at a specific point in time. There are probably more approaches
for than those four that we found. None of the approaches were new from a nat-
ural language processing research point of view. Additionally, popular methods
for text generation will probably have changed in subsequent years, for exam-
ple because of the availabilty of large-scale pre-trained neural language models
such as GPT-2. Nonetheless, I believe it is worthwhile for researchers to monitor
the use of generative techniques outside of published research. Studying other
creative communities, such as those involving Twitter bots, procedural games,
poetry generation, and interactive fiction, might lead to new insights for text
generation research. Our contribution was analyzing how NLG techniques are
used by creative practitioners for creating fiction. NaNoGenMo contributions
can show us which techniques are easy to deploy and intuitive to understand
for non-experts. Additionally, some of the programming tools and framing tricks
used by the participants might not yet be known to academic researchers.

RQ 2. How can these methods be adapted for generating coherent flavor text for
video games?

This research question was addressed in Chapter 4 and Chapter 5. In Chapter
4 we translated the four approaches we found to the video games domain. We
found that all four approaches used by NaNoGenMo participants are already used
in existing commercial games. The last method, evoking coherence, is the least
used in video games, and is the most interesting to explore further because of its
low cost and potentially high impact. In Chapter 5 we explored this approach
in practice with our headline generator Churnalist. Churnalist tries to evoke
coherence in its outputs by reusing words and phrases from its input. Indeed,
our evaluation showed that word reuse works for increasing perceived coherence

9

Conclusion | 185

of generated artifacts: evaluation participants preferred all headlines that re-
use words from the input, not just the headlines generated by Churnalist, when
rating headlines on their meaningfulness and the plausibility that they were part
of a video game.

RQ 3. How can we use Transformer-based language models to generate flavor text
for video games?

Transformer-based models have shown that they can create coherent text
even without any fine-tuning. For example, various journalists have used GPT-2
to generate news articles, although most seem to use a manual generate-and-
curate process, where multiple paragraphs are generated, and the best are hand-
picked by an editor for further editing. This method can not be copied for gen-
erating flavor text. Flavor text for video games should fit with the larger game
narrative and the in-game context in which it is shown to the player. Not all
flavor text is prose text, so it should also have the expected form. When given
a certain prompt, GPT-2 typically generates multiple paragraphs of texts in the
same format as the prompt, e.g. HTML tags in the prompt will lead to HTML tags
in the output, whereas a prose prompt tends to result in more English prose. To
ensure both the coherence and proper format of flavor text generated by GPT-2,
we fine-tuned GPT-2 on a implicit natural language generation task, using spe-
cial tags and task-specific corpora. The same approach had already been used in
earlier GPT-2 work on machine translation and patent generation. GPT-2 is an
opaque, non-transparent language model, so the internals of the language model
are hard to inspect. Researchers are currently using statistical analysis to analyze
neural models for latent biases and other problems. We expect that these efforts
will lead to additional ways to fine-tune and guide GPT-2 towards generating a
specific piece of text. However, the fine-tuning and generation method that we
used, i.e. using special tags to guide the language model, seems the best way to
generate specific artifacts with GPT-2, such as coherent flavor text.

We tested this aproach for the video games domain in Chapter 6 and Chapter
7. Both chapters feature a neural language model fine-tuned on task-specific
data. In Chapter 6 we presented Churnalist version 2, which generates headlines
from GPT-2 fine-tuned on GigaWord headlines. In Chapter 7, we generated flavor
text dialogues using GPT-2 fine-tuned on hand-written World of Warcraft quests.

In both cases, we expanded the example texts in the training set with spe-
cial tags and annotations. By fine-tuning GPT-2 on these annotated examples,
the language model learned an implicit generative task. It learned that a valid
output should contain the special tags, and that there is an implicit relation be-
tween the annotations and the text. The tags could then be used to steer the
generative model towards a desired output. In the case of Churnalist version
2, the language model learned that the phrase after <|object|> should also
occur in the output headline. We used this to generate headlines that contain
user-specified seed words. We conducted an error analysis of 300 generated fla-
vor text headlines that were created with Churnalist version 2, which showed

9

186 | Chapter 9

that the language quality problems prevalent in headlines from Churnalist ver-
sion 1 had largely disappeared. Most headlines were grammatical and could be
used as flavor text without manual modifications by a human editor. However, a
new type of problem appeared: the neural language model sometimes ‘halluci-
nates’ English words that are not in the prompt. This was especially the case for
prompts that include rare English words, or non-English fantasy words.

In the case of the language model fine-tuned on World of Warcraft quests, the
language model learned that a quest title and objective are followed by a short
piece of dialogue in the style that is specific to World of Warcraft. We evaluated
10 generated flavor text dialogues with an online survey on the properties of lan-
guage quality, coherence, novelty, surprise and creativity. The generated quests
were rated as significantly worse on language quality, coherence and novelty.
The ratings for surprise and creativity were close to those of human-written NPC
dialogues.

Can we conclude that large neural language models are the solution for gen-
erating flavor text? If the prompt and the desired flavor text contain only regular
English language text, then probably yes. GPT-2 was trained on such a large cor-
pus of web text that it has a good grasp of the English language, and sometimes
even shows something resembling common sense logic.

Our experiments in generating flavor text headlines showed that if we train
the model on a corpus of day-to-day English text, the fine-tuned language model
has difficulties processing prompts that include non-English words. This can be
a problem when we want to generate video game texts, as these often contain
fantasy words.

We tried to mitigate this problem in our experiments with generating World
of Warcraft flavor text dialogues. This time, we fine-tuned GPT-2 on a corpus of
video game specific text sourced from the target game. The results were very
different from the first experiment: generated NPC dialogues contained many
references to fictional names and locations, races, and the specific style of di-
alogue found in World of Warcraft. The language model could now interpret
non-English words, and refer to characters, objects and locations that were con-
tained in the prompt. However, the generated flavor text dialogues can still be
greatly improved. The dialogues show little inner logic. Generated dialogues
might contain references to existing World of Warcraft people, objects or loca-
tions even when these are not relevant or logical in the context of the quest. This
is due to the low amount of game context that was used as training set and em-
bedded in the prompt. The generator was only provided with the quest title and
objective as context.

RQ 4. What are the advantages and disadvantages of rule-based and Transformer-
based approaches for generating coherent flavor text?

We have tried to answer this question using three text generation systems:
rule-based Churnalist in Chapter 5, and Churnalist version 2, which uses GPT-2,

9

Conclusion | 187

in Chapter 6, and the NPC dialogue generator for World of Warcraft from Chapter
7.

In Chapter 5 we described Churnalist, a modular rule-based system for gen-
erating flavor text headlines. Churnalist was not meant to be innovative in terms
of text generation methods. Instead, it was created for investigating our hy-
pothesis that word substitution will lead to flavor text that is perceived to be
coherent. Churnalist was a minimum viable prototype, in the sense that the
method of text generation, i.e. word substitution, was kept as simple as possi-
ble. The generator’s algorithm was mostly based on randomisation instead of
linguistic knowledge, and the system was built using as many readily available
sources (such as open source libraries and open data) as possible. We also fo-
cused on creating English flavor text as opposed to Dutch flavor text, as there are
more resources available for English than for Dutch. However, even with these
choices, developing Churnalist was not straightforward. During development,
we ran into various practical problems: open source NLP libraries do not have
perfect accuracy, some functionalities of NLP libraries might only be available for
specific languages; and open data might contain noise or errors. These problems
trickle down the pipeline and degenerate the quality of outputs. On top of that,
building a complete system architecture from various moving parts turned out to
be error-prone and labor-intensive.

Of course, Churnalist is only one rule-based system for one application. Rule-
based systems have proven their worth in a variety of useful contexts, such as
the medical domain. However, creating a rule-based system from scratch might
be too laborious for various creative applications, where truthfulness and cor-
rectness are less important than when generating non-fiction text. Additionally,
rule-based systems are often tailored to very specific applications, and might not
easily adapt to other scenarios. This also counts to some extent for neural lan-
guage models trained on a specific task. However, when we take into account
the sheer size and variety of their training data, we can conclude that, broadly
speaking, large-scale neural language models are more general than most rule-
based systems. For these reasons, we estimate that neural language models are
generally more useful for creative text generation applications.

In Chapter 6 we presented Churnalist version 2, which generated headlines
from GPT-2 fine-tuned on GigaWord headlines. Developing this system only re-
quired fine-tuning GPT-2, which was much faster than developing Churnalist ver-
sion 1, even when we take into account the computational cost of fine-tuning.
Training the model only required a large enough dataset with text examples, in
this case the annotated Gigaword headlines.

We analyzed headlines from Churnalist version 2 on language quality, and
compared them to the headlines created by Churnalist version 1. We found
that the neural language model leads to outputs with higher language quality
compared to the rule-based system. However, using the neural model also had
disadvantages: the generator is not transparent, in contrast to its rule-based pre-

9

188 | Chapter 9

decessor, and the generator does not react well to non-English words in the input.
Fine-tuning a neural language model for the video games domain also requires
a large corpus of example texts, which can be problematic as not many corpora
are currently available.

In Chapter 7, we generated flavor text dialogues using GPT-2 fine-tuned on
hand-written World of Warcraft quests. Choosing World of Warcraft meant that
we had ample training data to work with. The game’s size, longevity and pop-
ularity all result in an abundancy of online resources, such as guides and wikis,
for players – which we can scrape to obtain a corpus of example texts.

In both neural flavor text generation systems, GPT-2’s latent knowledge of
language resulted in the creation of acceptable quality surface text. Especially if
there is a human in the loop, the advantages of neural language models, such
as fast development and good quality surface text, outweigh the drawbacks of
neural language models, such as opacity. Using neural language models requires
some technical expertise, but so does building a real rule-based system of suffi-
cient linguistic quality to be of use in practice. The biggest practical drawback
of using neural language models for generating fiction is their training data re-
quirement. However, new developments in neural language models are being
made very rapidly. Google is investigating increasingly smaller models, and re-
cent work has focused on statistical analyses of models to assess robustness and
hidden biases. Newer models might require less training data for learning a spe-
cific generation task, or might be able to deal with out-of-vocabulary words in a
more robust way. Currently, we cannot yet say with specificity how large a train-
ing set should be at the very minimum before it is useful for finetuning a neural
model.

RQ 5. If we want to generate coherent flavor text using data-driven NLG methods,
what are the requirements for training data, and where can we find data that fulfill
these requirements?

This question was addressed in Chapter 8. We proposed a list of require-
ments for video games based on our experiences with fine-tuning neural lan-
guage models: richness, representativeness, diversity and portability. Richness,
representativeness and portability are requirements for single datasets. In our ex-
periments with generating flavor text for quests, we noticed better results when
we used a homogeneous dataset when fine-tuning GPT-2 on a generation task.
This suggests that diversity within one dataset is not necessarily a good thing.
However, our rationale for diversity as requirement still applies to all datasets in
a research field as a whole: the datasets that we use for video games research
should reflect the diversity of the video games domain. In this chapter we also de-
scribed how new video game text corpora can be collected. They can be scraped
from fan-websites, or obtained from original game files, either by working with
open source games, official modding tools or community-built modding tools.
To demonstrate the feasibility of our approach, we collected three datasets with

9

Conclusion | 189

texts from commercial video games. It is also possible to create new or expanded
corpora by taking existing corpora and creating additional synthethic datapoints,
for example by masking part of the data, or extracting information from video
game paratext, such as reviews or Twitch video streams.

9.3 Directions for future work

This thesis explored flavor text generation for video games. The breadth of video
games and text generation research meant that the scope of the research was
limited to specific video game genres and text generation methods. We focused
on two specific methods for text generation, namely modular rule-based systems
in Chapter 5, and GPT-2 in Chapter 6 and 7. This thesis also explored how
resources created by online communities, such as fan-wikis, modding software
and creative open source projects, can contribute to academic games research.
Because video games are such a broad medium, we limited ourselves to narrative-
heavy commercial role-playing games. These limitations mean that further work
is needed to asssess whether the findings of this thesis also apply to other types
of games. In this section we will discuss ideas for future work.

Neural language models

Even though we used large-scale neural language models for text generation, we
focused on one specific architecture, i.e. GPT-2, and one specific implementa-
tion for that architecture, i.e. gpt-2-simple. Research into complex language
models has gained considerable momentum, and new and better language mod-
els are being developed every month. Future research needs to explore expres-
sive power, modeling capabilities and training methods for other neural language
models, such as BERT, while taking the requirements specific to procedural gen-
eration for video games into account.

In the context of GPT-2, it would be interesting to see how we can incorporate
additional contextual data during generation, such as a player model or aspects
of the game state. This could improve the coherence of generated assets with the
rest of the game world. Our experiment with generating World of Warcraft dia-
logues showed that it is not enough if a language model just copies the writing
style of a particular game. The dialogues generated by our fine-tuned language
model contained names of characters and locations, but the language model has
no knowledge of these entities, which makes it hard to refer to them in a real-
istic context. For example, the language model might refer to far-away in-game
locations as if they are situated close by, or it might refer to dead characters as
if they were still alive. It could also generate positive sentences about negative
events or evil characters. This is not a critical problem if the language model is
generating content under supervision of a human (writer), who has knowledge
of the game world and a clear definition of valid content. This behaviour is also

9

190 | Chapter 9

unproblematic if the goal of the language model is to generate large volumes of
content that can be used as a basis for further refinement by human writers. All
our language models were used for offline generation in the context of human-
computer co-creation, where the human user influences and curates the outputs
of the generator. In future, we should also try to develop generative models (1)
that are suitable for online generation and (2) that do not require human super-
vision, such as used in online game AI Dungeon [282]. This would significantly
broaden the possible applications of large language models.

More NLP methods should be tested specifically on video game data. There
is a data bias in NLP: researchers tend to use the same corpora again and again.
This has advantages such as comparability, ease, etc. but also leads to wildly
varying results on corpora from other domains than the benchmarks, e.g. senti-
ment analysis on things that are not product reviews. This one-sidedness could
decrease the robustness of NLP techniques across domains. This data bias should
be mitigated by testing standard NLP tasks on video game data, and confirming
that tasks that are considered to be ‘solved’ in NLP research perform similarly on
video game data as on benchmark data. Further developments in NLP for video
game texts could then be used for large-scale analysis of game data, which in
turn could benefit NLG for video games. For example, we could automatically
annotate new corpora with game text, and use the annotations for fine-tuning
language models for text generation.

Video game corpora

In the research literature we can find training sets for neural language models
that range from a few hundred datapoints to millions of datapoints. It would be
useful to know how large new video game corpora should be, if they are to be
used for fine-tuning large-scale language models such as GPT-2. As the choice
for a specific optimization algorithm, neural network architecture and goal task
probably also influence the optimal training set size, a systematic exploration
of minimal training set sizes for various NLP tasks and models would be useful
reference material for researchers that want to create new corpora.

Of the four video game corpora that were created for this thesis, only two
were already used in a research project. The quest dialogue generator from Chap-
ter 7 was trained on the World of Warcraft dataset, and in an earlier work [26],
we used the dataset with documents from The Elder Scrolls to create a game-
specific lexicon for sentiment analysis. Our corpora could be used in many other
research projects. The dataset with Knights of the Old Republic dialogue could
be used for the creation of a branching dialogue generator, using a similar fine-
tuning method as was used for the World of Warcraft dialogue generator. The
Torchlight II dataset is particularly versatile because of the various categories of
in-game text it contains. Torchlight II is a typical example of action role-playing
games in the hack-and-slash subgenre, which means that similar games, such
as Diablo [40], Sacred [9], Titan Quest [140] and Path of Exile [120], might

Conclusion | 191

contain the same type of text. We could employ these similarities for investigat-
ing the generalizability of fine-tuned language models to different game worlds.
To start, the Torchlight II data could be combined with the World of Warcraft
dataset to see if we can generate Torchlight II quests using World of Warcraft
data, and vice versa. The corpus could also be used for quest generation, similar
to the research in Chapter 7. Outside of a text generation context, the corpora
could also be used for natural language processing research, e.g. for validating
solutions to common NLP tasks on special-domain corpora, or for text analyt-
ics as part of game studies, e.g. research on gender stereotypes in video games
or linguistic properties of fantasy languages. Future research could apply our
method for extracting Star Wars: Knights of the Old Republic dialogue to other
games created with Bioware’s Aurora game engine, such as Mass Effect [35],
Dragon Age: Origins [34] and The Witcher [59]. The assets from these games
will probably all have a similar structure, because their games were built on the
same game engine. As the games assets share the same structure, but have very
different contents, this would create corpora that are particularly interesting for
investigating cross-training neural models on different texts, and assessing the
transferability and generalizability of the fine-tuned language models.

Narrative coherence for video games

As we discussed in the introduction, narrative coherence played an important
role in this thesis. However, we found that regular definitions of coherence were
not directly applicable to games, which is why we introduced the concept of
‘game-level coherence’. A more formal definition of what coherence means in
the context of games would be useful, as it could be used to develop methods
for automatically measuring narrative coherence. Whether we want to measure
the narrative coherence of regular, linear texts or interconnected game texts, this
is also an area worth investigating. As far as we know, there currently exist no
methods for automatically assessing syntactic and semantic coherence in longer
texts. Scheuter [232] did some interesting preliminary work in this direction in
2021. Such an automatic assessment would have been useful for our survey of
NaNoGenMo contributions, as we could have automatically selected the most in-
teresting and most coherent contributions from NaNoGenMo participants. Auto-
matically assessing the narrative coherence of video game assets could be useful
for procedural content generation research. However, creating automatic as-
sessments that are generalizable, instead of game-specific or genre-specific, will
remain challenging as game development is such a dynamic, fast-changing prac-
tice.

192 | Chapter 9

Bibliography

[1] A.I. Design. Rogue. Game [various platforms]. Epyx, San Francisco, Cali-
fornia, US. 1980.

[2] Tarn Adams and Zach Adams. Dwarf Fortress. Game [PC]. Bay 12 Games,
Silverdale, WA, USA. Played May 2018. Bay 12 Games, 2002.

[3] David H. Ahl. BASIC computer games: Microcomputer edition. 1978.

[4] Khalid Alnajjar, Leo Leppänen, Hannu Toivonen, et al. “No time like the
present: methods for generating colourful and factual multilingual news
headlines”. In: Proceedings of the 10th International Conference on Com-
putational Creativity. Association for Computational Creativity. 2019.

[5] Alba Amato. “Procedural content generation in the game industry”. In:
Game Dynamics. Ed. by Oliver Korn and Newton Lee. Springer, 2017,
pp. 15–25.

[6] Prithviraj Ammanabrolu, William Broniec, Alex Mueller, Jeremy Paul,
and Mark O. Riedl. “Toward Automated Quest Generation in Text-Adventure
Games”. In: Proceedings of the 4th Workshop on Computational Creativ-
ity in Language Generation. Tokyo, Japan: Association for Computational
Linguistics, Oct. 2019, pp. 1–12. URL: https://www.aclweb.org/antholo
gy/2019.ccnlg-1.1.

[7] Barrett R. Anderson and Adam M. Smith. “The Undergraduate Games
Corpus: A Dataset for Machine Perception of Interactive Media”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence 35.1 (May 2021),
pp. 3–11. URL: https://ojs.aaai.org/index.php/AAAI/article/view/1607
1.

[8] Wissam Antoun, Fady Baly, and Hazem Hajj. “AraGPT2: pre-trained trans-
former for Arabic language generation”. In: arXiv preprint arXiv:2012.15520
(2020).

[9] Ascaron Entertainment. Sacred. Game [PC]. Encore, San Jose, California,
US. San Jose, California, US, Mar. 2004.

194 | Bibliography

[10] Maren Awiszus, Frederik Schubert, and Bodo Rosenhahn. “World-GAN:
a Generative Model for Minecraft Worlds”. In: CoRR abs/2106.10155
(2021). arXiv: 2106.10155. URL: https://arxiv.org/abs/2106.10155.

[11] Ruth Aylett. “Narrative in virtual environments-towards emergent narra-
tive”. In: Proceedings of the AAAI fall symposium on narrative intelligence.
1999, pp. 83–86.

[12] Ruth Aylett, Sandy Louchart, Joao Dias, Ana Paiva, and Marco Vala.
“FearNot!–an experiment in emergent narrative”. In: International Work-
shop on Intelligent Virtual Agents. Springer. 2005, pp. 305–316.

[13] Kenny Backus. “Managing output: boredom versus chaos”. In: Procedural
Generation in Game Design. Ed. by Tanya X Short and Tarn Adams. AK
Peters/CRC Press, 2017. Chap. 2, pp. 13–21.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2015. URL: http://arxiv.org/abs/1409.0473.

[15] Andrea Ballatore, Michela Bertolotto, and David C. Wilson. “An Evalua-
tive Baseline for Geo-Semantic Relatedness and Similarity”. In: Geoinfor-
matica 18.4 (Oct. 2014), pp. 747–767. ISSN: 1384-6175. DOI: 10.1007/s
10707-013-0197-8. URL: https://doi.org/10.1007/s10707-013-0197-8.

[16] David Bamman, Brendan O’Connor, and Noah A. Smith. “Learning Latent
Personas of Film Characters”. In: Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers).
Sofia, Bulgaria: Association for Computational Linguistics, Aug. 2013,
pp. 352–361. URL: https://www.aclweb.org/anthology/P13-1035.

[17] Michele Banko, Vibhu O Mittal, and Michael J Witbrock. “Headline gen-
eration based on statistical translation”. In: Proceedings of the 38th An-
nual Meeting of ACL. Association for Computational Linguistics. 2000,
pp. 318–325.

[18] Eric Barone. Stardew Valley. Game [PC]. ConcernedApe, Los Angeles,
California, United States and Chucklefish, London, United Kingdom. Played
November 2016. Los Angeles, California, United States, Feb. 2016.

[19] Nuno Barreto, Amílcar Cardoso, and Licínio Roque. “Computational cre-
ativity in procedural content generation: A state of the art survey”. In:
Proceedings of the 2014 conference of science and art of video games. 2014.

[20] Gabriella A. B. Barros, Antonios Liapis, and Julian Togelius. “Data adven-
tures”. In: Proceedings of the FDG workshop on Procedural Content Genera-
tion in Games, Pacific Grove. Association for Computing Machinery. 2015.

Bibliography | 195

[21] Gabriella A. B. Barros, Antonios Liapis, and Julian Togelius. “Murder
mystery generation from open data”. In: Proceedings of the International
Conference on Computational Creativity. 2016.

[22] Gabriella A.B. Barros, Michael Cerny Green, Antonios Liapis, and Julian
Togelius. “Who killed albert einstein? From open data to murder mystery
games”. In: IEEE Transactions on Games (2018).

[23] Chris Bateman. Game writing: Narrative skills for videogames. Charles
River Media, 2007.

[24] Anja Belz. “Fully Automatic Journalism: We Need to Talk About Nonfake
News Generation.” In: TTO. 2019.

[25] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-
garet Shmitchell. “On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big?” In: Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency. FAccT ’21. Virtual Event, Canada:
Association for Computing Machinery, 2021, pp. 610–623. ISBN: 9781450383097.
DOI: 10.1145/3442188.3445922. URL: https://doi.org/10.1145/34421
88.3445922.

[26] Thérèse Bergsma, Judith van Stegeren, and Mariët Theune. “Creating
a Sentiment Lexicon with Game-Specific Words for Analyzing NPC Dia-
logue in The Elder Scrolls V: Skyrim”. English. In: Workshop on Games
and Natural Language Processing. Marseille, France: European Language
Resources Association, May 2020, pp. 1–9. ISBN: 979-10-95546-40-5.
URL: https://www.aclweb.org/anthology/2020.gamnlp-1.1.

[27] Bethesda Game Studios. Radiant story generation. Software, part of The
Elder Scrolls IV: Skyrim. Bethesda Softworks, Rockville, Maryland, US.
Bethesda Softworks.

[28] Bethesda Game Studios. The Elder Scrolls III: Morrowind. Game [PC].
Bethesda Softworks, Rockville, Maryland, US. Bethesda Softworks, 2002.

[29] Bethesda Game Studios. The Elder Scrolls IV: Oblivion. Game [PC]. Bethesda
Softworks, Rockville, Maryland, US and 2K Games, Novato, California,
US. Bethesda Softworks and 2K Games, 2006.

[30] Bethesda Game Studios. The Elder Scrolls V: Skyrim. Game [PC]. Bethesda
Softworks, Rockville, Maryland, US. Bethesda Softworks, 2011.

[31] Bethesda Softworks. The Elder Scrolls I-V and The Elder Scrolls Online.
Game series [PC]. Bethesda Softworks, Rockville, Maryland, US. Bethesda
Softworks, 1994–2014.

[32] Bethesda Softworks. The Elder Scrolls II: Daggerfall. Game [PC]. Bethesda
Softworks, Rockville, Maryland, US. Bethesda Softworks, 1996.

[33] Bethesda Softworks. The Elder Scrolls: Arena. Game [MS-DOS]. Bethesda
Softworks, Rockville, Maryland, US. Bethesda Softworks, 1994.

196 | Bibliography

[34] BioWare. Dragon Age: Origins. Game [PC]. Electronic Arts, California,
US. 2009.

[35] BioWare. Mass Effect. Game [PC]. 2007.

[36] BioWare. Star Wars: Knights of the Old Republic. Game [PC]. LucasArts,
San Francisco, US. LucasArts, 2003.

[37] Michael Blatz and Oliver Korn. “A Very Short History of Dynamic and Pro-
cedural Content Generation”. In: Game Dynamics. Springer, 2017, pp. 1–
13.

[38] Blizzard Entertainment. Diablo III. Game [PC]. Blizzard Entertainment,
Irvine, California, United States. Played June 2012. Irvine, California,
United States, May 2012.

[39] Blizzard Entertainment. World of Warcraft. Game [PC]. Blizzard Enter-
tainment, Irvine, California, US. Blizzard Entertainment, 2004.

[40] Blizzard North. Diablo. Game [PC]. Blizzard Entertainment, Irvine, Cali-
fornia, U.S. Irvine, California, U.S., Jan. 1997.

[41] Margaret A. Boden. “Creativity in a nutshell”. In: Think 5.15 (2007),
pp. 83–96. ISSN: 1477-1756. DOI: 10.1017/s147717560000230x.

[42] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
“Enriching Word Vectors with Subword Information”. In: Transactions of
the Association of Computational Linguistics 5 (2017), pp. 135–146.

[43] Richard Boon. “Writing for games”. In: Game writing: Narrative skills for
videogames. Ed. by Chris Bateman. Charles River Media, 2007.

[44] Hudson Borges and Marco Tulio Valente. “What’s in a GitHub star? un-
derstanding repository starring practices in a social coding platform”. In:
Journal of Systems and Software 146 (2018), pp. 112–129.

[45] David Braben and Ian Bell. Elite. Game [various platforms]. Acornsoft,
Cambridge, England. Cambridge, England, Sept. 1984.

[46] Daniel Braun, Ehud Reiter, and Advaith Siddharthan. “SaferDrive: An
NLG-based behaviour change support system for drivers”. In: Natural
Language Engineering 24.4 (2018), pp. 551–588.

[47] Daniel Braun, Anupama Sajwan, and Florian Matthes. “User-adaptable
Natural Language Generation for Regression Testing within the Finance
Domain”. In: Proceedings of the 22nd International Conference on Enter-
prise Information Systems - Volume 1: ICEIS, INSTICC. SciTePress, Jan. 1,
2020, pp. 613–618. ISBN: 978-989-758-423-7. DOI: 10.5220/00095633
06130618. URL: https://www.daniel-braun.com/wp-content/uploads/2
020/05/ICEIS_2020_198.pdf. published.

Bibliography | 197

[48] Scott Brisson, Ehsan Noei, and Kelly Lyons. “We Are Family: Analyzing
Communication in GitHub Software Repositories and Their Forks”. In:
2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). 2020, pp. 59–69. DOI: 10.1109/SANER482
75.2020.9054834.

[49] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. “Language
Models are Few-Shot Learners”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 1877–1901.
URL: https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb496
7418bfb8ac142f64a-Paper.pdf.

[50] Bungie. Destiny. Game [PlayStation, Xbox]. Bungie, Bellevue, Washing-
ton, US. Activision and Bungie, 2014.

[51] Charles B Callaway and James C Lester. “Narrative prose generation”. In:
Artificial Intelligence 139.2 (2002), pp. 213–252.

[52] Giuseppe Carenini and Johanna D Moore. “Generating and evaluating
evaluative arguments”. In: Artificial Intelligence 170.11 (2006), pp. 925–
952.

[53] Maria Fernanda Caropreso, Diana Inkpen, Fazel Keshtkar, and Shahzad
Khan. “Template Authoring Environment for the Automatic Generation
of Narrative Content”. In: Journal of Interactive Learning Research 23.3
(2012), pp. 227–249.

[54] Maria Fernanda Caropreso, Diana Inkpen, Shahzad Khan, and Fazel Keshtkar.
“Automatic generation of narrative content for digital games”. In: 2009
International Conference on Natural Language Processing and Knowledge
Engineering. IEEE. 2009, pp. 1–8.

[55] Isamar Carrillo Masso. “Developing a methodology for corpus-based com-
puter game studies”. In: Journal of Gaming & Virtual Worlds 1.2 (2009),
pp. 143–169.

[56] Thiago Castro Ferreira, Diego Moussallem, Emiel Krahmer, and Sander
Wubben. “Enriching the WebNLG corpus”. In: Proceedings of the 11th
International Conference on Natural Language Generation. Tilburg Uni-
versity, The Netherlands: Association for Computational Linguistics, Nov.
2018, pp. 171–176. DOI: 10.18653/v1/W18-6521. URL: https://aclanth
ology.org/W18-6521.

198 | Bibliography

[57] Marc Cavazza and Fred Charles. “Dialogue Generation in Character-based
Interactive Storytelling.” In: AIIDE. 2005, pp. 21–26.

[58] CCP Games. EVE Online. Game [PC]. CCP Games, Reykjavík, Iceland.
CCP Games, 2003.

[59] CD Projekt Red. The Witcher. Game [PC]. Atari, Inc., New York City, New
York, US and CD Projekt Red, Łódź, Poland. CD Projekt Red, 2007.

[60] CD Projekt Red. The Witcher 3: Wild Hunt. Game [PC]. CD Projekt, War-
saw, Poland. Warsaw, Poland, May 2015.

[61] Cellar Door Games. Rogue Legacy. Game [PC]. Cellar Door Games, Toronto,
Ontario, CA. 2013.

[62] Wenhu Chen, Yu Su, Xifeng Yan, and William Yang Wang. “KGPT: Knowledge-
Grounded Pre-Training for Data-to-Text Generation”. In: Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics, Nov. 2020,
pp. 8635–8648. DOI: 10.18653/v1/2020.emnlp-main.697. URL: https:
//aclanthology.org/2020.emnlp-main.697.

[63] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. “On the Properties of Neural Machine Translation: Encoder–
Decoder Approaches”. In: Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation. Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 103–111. DOI:
10.3115/v1/W14-4012. URL: https://www.aclweb.org/anthology/W14
-4012.

[64] Noam Chomsky. “Three models for the description of language”. In: IRE
Transactions on information theory 2.3 (1956), pp. 113–124.

[65] Choose Your Own Adventure. Gamebook series. 1979–1998 (original se-
ries). Bantam Books, 1979.

[66] Andry Chowanda, Martin Flintham, Peter Blanchfield, and Michel Valstar.
“Playing with Social and Emotional Game Companions”. In: Intelligent
Virtual Agents. Ed. by David Traum, William Swartout, Peter Khooshabeh,
Stefan Kopp, Stefan Scherer, and Anton Leuski. Cham: Springer Interna-
tional Publishing, 2016, pp. 85–95. ISBN: 978-3-319-47665-0.

[67] Carlos A Colmenares, Marina Litvak, Amin Mantrach, and Fabrizio Sil-
vestri. “Heads: Headline generation as sequence prediction using an ab-
stract feature-rich space”. In: Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2015, pp. 133–142.

[68] Colossal Order. Cities: Skylines. Game [PC]. Paradox Interactive, Stock-
holm, Sweden. Paradox Interactive, 2017.

Bibliography | 199

[69] Simon Colton and Geraint A. Wiggins. “Computational Creativity: The
Final Frontier?” In: Proceedings of the 20th European Conference on Arti-
ficial Intelligence. ECAI’12. Montpellier, France: IOS Press, 2012, pp. 21–
26. ISBN: 9781614990970.

[70] Kate Compton, Quinn Kybartas, and Michael Mateas. “Tracery: an author-
focused generative text tool”. In: International Conference on Interactive
Digital Storytelling. Springer. 2015, pp. 154–161.

[71] Kate Compton and Michael Mateas. “Casual Creators”. In: Proceedings
of the Sixth International Conference on Computational Creativity June.
2015, p. 228.

[72] Michael Cook. “A vision for continuous automated game design”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment. Vol. 13. 1. 2017.

[73] Michael Cook. “Procedural Generation and Information Games”. In: 2020
IEEE Conference on Games (CoG). IEEE. 2020, pp. 253–260.

[74] Michael Cook and Simon Colton. “A rogue dream: Automatically generat-
ing meaningful content for games”. In: Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment. Vol. 10. 1.
2014.

[75] Michael Cook and Simon Colton. “Neighbouring Communities: Interac-
tion, Lessons and Opportunities”. In: International Conference on Compu-
tational Creativity. Salamanca, Spain, 2018.

[76] Michael Cook, Jeremy Gow, Gillian Smith, and Simon Colton. “Danesh:
Interactive Tools For Understanding Procedural Content Generators”. In:
IEEE Transactions on Games (2021), pp. 1–1. DOI: 10.1109/TG.2021.30
78323.

[77] Paul A Crutcher. “Magic: The Gathering, A Literary Text”. In: Americana:
The Journal of American Popular Culture (1900-present) 16.1 (2017). htt
ps://www.americanpopularculture.com/journal/articles/spring_2017/c
rutcher.htm, retrieved April 9, 2021.

[78] Steve Dahlskog and Julian Togelius. “Patterns and Procedural Content
Generation: Revisiting Mario in World 1 Level 1”. In: Proceedings of the
First Workshop on Design Patterns in Games. DPG ’12. Raleigh, North Car-
olina, USA: Association for Computing Machinery, 2012. ISBN: 9781450318549.
DOI: 10.1145/2427116.2427117. URL: https://doi.org/10.1145/24271
16.2427117.

[79] Richard Dansky. “Introduction to game narrative”. In: Game writing: Nar-
rative skills for videogames. Ed. by Chris Bateman. Charles River Media,
2007.

200 | Bibliography

[80] Barbara De Kegel and Mads Haahr. “Procedural puzzle generation: a sur-
vey”. In: IEEE Transactions on Games 12.1 (2019), pp. 21–40.

[81] Kees van Deemter, Emiel Krahmer, and Mariët Theune. “Squibs and Dis-
cussions: Real versus Template-Based Natural Language Generation: A
False Opposition?” In: Computational Linguistics 31.1 (2005), pp. 15–24.
DOI: 10.1162/0891201053630291. URL: https://www.aclweb.org/anth
ology/J05-1002.

[82] Natlie Dehn. “Story Generation After TALE-SPIN.” In: Proceedings of the
Seventh International Joint Conference on Artificial Intelligence. Vol. 81. A.
Drinan (ed.). 24-28 August 1981, University of British Columbia Vancou-
ver, B.C., Canada. IJCAI, 1981, pp. 16–18.

[83] Wendy Despain. Professional techniques for video game writing. Second.
CRC Press, 2020.

[84] Wendy Despain. Writing for video game genres: From FPS to RPG. CRC
Press, 2009.

[85] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing”. In: Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: As-
sociation for Computational Linguistics, June 2019, pp. 4171–4186. DOI:
10.18653/v1/N19-1423. URL: https://www.aclweb.org/anthology/N19
-1423.

[86] Bruno Dias. Voyageur. Game [PC]. Game at itch.io. https://brunodias.it
ch.io/voyageur. 2017.

[87] Jonathon Doran and Ian Parberry. “A Prototype Quest Generator Based
on a Structural Analysis of Quests from Four MMORPGs”. In: Proceedings
of the 2nd International Workshop on Procedural Content Generation in
Games. PCGames ’11. Bordeaux, France: Association for Computing Ma-
chinery, 2011. ISBN: 9781450308724. DOI: 10.1145/2000919.2000920.
URL: https://doi.org/10.1145/2000919.2000920.

[88] Bonnie Dorr, David Zajic, and Richard Schwartz. “Hedge Trimmer: A
Parse-and-Trim Approach to Headline Generation”. In: Proceedings of the
HLT-NAACL 03 Text Summarization Workshop. 2003, pp. 1–8. URL: https
://www.aclweb.org/anthology/W03-0501.

[89] Mikhail G Dozmorov. “GitHub statistics as a measure of the impact of
open-source bioinformatics software”. In: Frontiers in bioengineering and
biotechnology 6 (2018), p. 198.

Bibliography | 201

[90] Ondřej Dušek, Jekaterina Novikova, and Verena Rieser. “Findings of the
E2E NLG Challenge”. In: Proceedings of the 11th International Conference
on Natural Language Generation. Tilburg University, The Netherlands: As-
sociation for Computational Linguistics, Nov. 2018, pp. 322–328. DOI: 1
0.18653/v1/W18-6539. URL: https://www.aclweb.org/anthology/W18
-6539.

[91] Doug Dyment. Hamurabi. Game [various platforms]. 1968.

[92] Eidos Montréal. Deus Ex: Human Revolution. Game [PC]. Square Enix,
Shinjuku, Tokyo, Japan. Square Enix, 2011.

[93] Amin Fadaeddini, Babak Majidi, and Mohammad Eshghi. “A Case Study
of Generative Adversarial Networks for Procedural Synthesis of Original
Textures in Video Games”. In: 2018 2nd National and 1st International
Digital Games Research Conference: Trends, Technologies, and Applications
(DGRC). 2018, pp. 118–122. DOI: 10.1109/DGRC.2018.8712070.

[94] Tamás Fekete and Ádám Porkoláb. “From Arkngthand to Wretched Squalor:
Fictional place-names in The Elder Scrolls universe”. In: ICAME Journal
43.1 (2019), pp. 23–58.

[95] Freehold Games. Caves of Qud. Game [PC/Mac/Linux]. Freehold Games,
USA. Freehold Games, 2018.

[96] Marie Gustafsson Friberger and Julian Togelius. “Generating game con-
tent from open data”. In: Proceedings of the International Conference on
the Foundations of Digital Games. ACM. 2012, pp. 290–291.

[97] Marie Gustafsson Friberger and Julian Togelius. “Generating interesting
monopoly boards from open data”. In: Computational Intelligence and
Games (CIG), 2012 IEEE Conference on. IEEE. 2012, pp. 288–295.

[98] Leon Fröhling and Arkaitz Zubiaga. “Feature-based detection of auto-
mated language models: tackling GPT-2, GPT-3 and Grover”. In: PeerJ
Computer Science 7 (2021), e443.

[99] Rubén H García-Ortega, Pablo García-Sánchez, Juan J Merelo, Aránzazu
San-Ginés, and Ángel Fernández-Cabezas. “The story of their lives: Mas-
sive procedural generation of heroes’ journeys using evolved agent-based
models and logical reasoning”. In: European Conference on the Applica-
tions of Evolutionary Computation. Springer. 2016, pp. 604–619.

[100] Richard Garfield. Magic: The Gathering. Card game. 1993.

[101] Albert Gatt and Emiel Krahmer. “Survey of the State of the Art in Nat-
ural Language Generation: Core tasks, applications and evaluation”. In:
Journal of Artificial Intelligence Research 61 (2018), pp. 65–170.

202 | Bibliography

[102] Albert Gatt, Francois Portet, Ehud Reiter, Jim Hunter, Saad Mahamood,
Wendy Moncur, and Somayajulu Sripada. “From data to text in the neona-
tal intensive care unit: Using NLG technology for decision support and
information management”. In: Ai Communications 22.3 (2009), pp. 153–
186.

[103] Albert Gatt and Ehud Reiter. “SimpleNLG: A realisation engine for practi-
cal applications”. In: Proceedings of the 12th European Workshop on Nat-
ural Language Generation (ENLG 2009). 2009, pp. 90–93.

[104] Lorenzo Gatti, Gözde Özbal, Marco Guerini, Oliviero Stock, and Carlo
Strapparava. “Heady-Lines: A Creative Generator Of Newspaper Head-
lines”. In: Companion Publication of the 21st International Conference on
Intelligent User Interfaces, IUI 2016. 2016, pp. 79–83. DOI: 10.1145/287
6456.2879469. URL: http://doi.acm.org/10.1145/2876456.2879469.

[105] Lorenzo Gatti and Judith van Stegeren. “Improving Dutch sentiment anal-
ysis in Pattern”. In: Computational Linguistics in the Netherlands Journal
10 (Dec. 2020).

[106] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah
A. Smith. “RealToxicityPrompts: Evaluating Neural Toxic Degeneration in
Language Models”. In: Findings of the Association for Computational Lin-
guistics: EMNLP 2020. Online: Association for Computational Linguistics,
Nov. 2020, pp. 3356–3369. DOI: 10.18653/v1/2020.findings-emnlp.301.
URL: https://aclanthology.org/2020.findings-emnlp.301.

[107] Dominique Geissler, Elisa Nguyen, Daphne Theodorakopoulos, and Lorenzo
Gatti. “Pokérator-Unveil your inner Pokémon”. In: 11th International Con-
ference on Computational Creativity. 2020.

[108] Pablo Gervás. “Propp’s Morphology of the Folk Tale as a Grammar for
Generation”. In: Proceedings of the 2013 Workshop on Computational Mod-
els of Narrative. Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
2013.

[109] Pablo Gervás. “Story Generator Algorithms”. In: The Living Handbook of
Narratology. Hamburg: Hamburg University 19 (2012).

[110] H Geuvers, W Geraedts, B Geron, and J van Stegeren. “A type system
for Continuation Calculus”. In: Proceedings Fifth International Workshop
on Classical Logic and Computation, CL&C 2014, Vienna, Austria, July 13,
2014. Ed. by Paulo Oliva. Vol. 164. EPTCS. 2014, pp. 1–18.

[111] D. Gkatzia, V. Rieser, and O. Lemon. “How to talk to strangers: Gener-
ating medical reports for first-time users”. In: 2016 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). 2016, pp. 579–586. DOI: 10.1
109/FUZZ-IEEE.2016.7737739.

Bibliography | 203

[112] Dimitra Gkatzia, Oliver Lemon, and Verena Rieser. “Natural Language
Generation enhances human decision-making with uncertain informa-
tion”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Berlin, Germany: As-
sociation for Computational Linguistics, Aug. 2016, pp. 264–268. DOI:
10.18653/v1/P16-2043. URL: https://www.aclweb.org/anthology/P16-
2043.

[113] John J Godfrey, Edward C Holliman, and Jane McDaniel. “SWITCHBOARD:
Telephone speech corpus for research and development”. In: [Proceed-
ings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Vol. 1. IEEE. 1992, pp. 517–520.

[114] Eli Goldberg, Norbert Driedger, and Richard I Kittredge. “Using natural-
language processing to produce weather forecasts”. In: IEEE Expert 9.2
(1994), pp. 45–53.

[115] Hugo Gonçalo Oliveira. “O Poeta Artificial 2.0: Increasing meaningful-
ness in a poetry generation twitter bot”. In: Proceedings of the Work-
shop on Computational Creativity in Natural Language Generation (CC-
NLG 2017). 2017, pp. 11–20.

[116] Hugo Gonçalo Oliveira. “PoeTryMe: a versatile platform for poetry gener-
ation”. In: Proceedings of the ECAI 2012 Workshop on Computational Cre-
ativity, Concept Invention, and General Intelligence (C3GI at ECAI 2012).
Montpellier, France, 2012.

[117] Michael Cerny Green, Gabriella A.B. Barros, Antonios Liapis, and Julian
Togelius. “DATA agent”. In: Proceedings of the 13th International Confer-
ence on the Foundations of Digital Games. ACM. 2018, p. 19.

[118] Shai Gretz, Yonatan Bilu, Edo Cohen-Karlik, and Noam Slonim. “The
workweek is the best time to start a family – A Study of GPT-2 Based
Claim Generation”. In: Findings of the Association for Computational Lin-
guistics: EMNLP 2020. Online: Association for Computational Linguistics,
Nov. 2020, pp. 528–544. DOI: 10.18653/v1/2020.findings-emnlp.47.
URL: https://aclanthology.org/2020.findings-emnlp.47.

[119] Jason Grinblat and Brian Bucklew. “Subverting historical cause & effect:
generation of mythic biographies in Caves of Qud”. In: Proceedings of the
12th International Conference on the Foundations of Digital Games. ACM.
Hyannis, Massachusetts: ACM, 2017, pp. 1–7. ISBN: 978-1-4503-5319-9.
DOI: 10.1145/3102071.3110574. URL: http://doi.acm.org/10.1145/31
02071.3110574.

[120] Grinding Gear Games. Path of Exile. Game [PC]. Grinding Gear Games,
Auckland, New Zealand. Auckland, New Zealand, Oct. 2013.

204 | Bibliography

[121] The Guardian and Liam Porr. A robot wrote this entire article. Are you
scared yet, human? The Guardian, Opinion, Artificial Intelligence (AI).
Published September 8, 2020. Retrieved August 11, 2021 from https :
//www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-thi
s-article-gpt-3. Sept. 2020.

[122] Manuel Guimaraes, Pedro Santos, and Arnav Jhala. “CiF-CK: An archi-
tecture for social NPCS in commercial games”. In: 2017 IEEE Conference
on Computational Intelligence and Games (CIG). 2017, pp. 126–133. DOI:
10.1109/CIG.2017.8080425.

[123] Matthew Guzdial, Brent Harrison, Boyang Li, and Mark O. Riedl. “Crowd-
sourcing Open Interactive Narrative.” In: FDG. 2015.

[124] Gary Gygax and Dave Arneson. Dungeons & Dragons. Tabletop role-playing
game. 1974.

[125] Alon Halevy, Peter Norvig, and Fernando Pereira. “The unreasonable ef-
fectiveness of data”. In: IEEE Intelligent Systems 24.2 (2009), pp. 8–12.

[126] Jason Andrew Hall, Benjamin Williams, and Christopher J Headleand.
“Artificial Folklore for Simulated Religions”. In: 2017 International Con-
ference on Cyberworlds (CW). IEEE. Chester, UK, 2017, pp. 229–232.

[127] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru
Iosup. “Procedural content generation for games: A survey”. In: ACM
Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMM) 9.1 (2013), p. 1.

[128] Frazer Heritage. “Applying corpus linguistics to videogame data: Explor-
ing the representation of gender in videogames at a lexical level”. In:
Game studies 20.3 (2020).

[129] Douglas Hofstadter. “Preface 4: The Ineradicable Eliza Effect and Its Dan-
gers”. In: Fluid concepts and creative analogies: computer models of the
fundamental mechanisms of thought. Basic Books, New York, 1995.

[130] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. “The
Curious Case of Neural Text Degeneration”. In: International Conference
on Learning Representations. 2020.

[131] Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub,
and Yejin Choi. “Learning to Write with Cooperative Discriminators”. In:
Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Melbourne, Australia: Asso-
ciation for Computational Linguistics, July 2018, pp. 1638–1649. URL:
https://www.aclweb.org/anthology/P18-1152.

Bibliography | 205

[132] Saar Hommes, Chris van der Lee, Felix Clouth, Jeroen Vermunt, Xander
Verbeek, and Emiel Krahmer. “A Personalized Data-to-Text Support Tool
for Cancer Patients”. In: Proceedings of the 12th International Conference
on Natural Language Generation. Tokyo, Japan: Association for Compu-
tational Linguistics, Oct. 2019, pp. 443–452. DOI: 10.18653/v1/W19-86
56. URL: https://www.aclweb.org/anthology/W19-8656.

[133] Kristina Höök. “Affective loop experiences: designing for interactional
embodiment”. In: Philosophical Transactions of the Royal Society B: Bio-
logical Sciences 364.1535 (2009), pp. 3585–3595.

[134] Ian D Horswill. “Dear Leader’s Happy Story Time: A Party Game Based
on Automated Story Generation”. In: Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference. 2016.

[135] David Howell. Contributions: parts of Magic that are all my fault. Online.
Online. Retrieved September 14, 2021 from https://web.archive.org/we
b/20190130162157/http://howell.seattle.wa.us/games/mtg/contributi
ons.html. Archived January 30, 2019.

[136] Chenyang Huang, Osmar R Zaiane, Amine Trabelsi, and Nouha Dziri.
“Automatic dialogue generation with expressed emotions”. In: Proceed-
ings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers). 2018, pp. 49–54.

[137] James Hunter, Yvonne Freer, Albert Gatt, Ehud Reiter, Somayajulu Sri-
pada, and Cindy Sykes. “Automatic generation of natural language nurs-
ing shift summaries in neonatal intensive care: BT-Nurse”. In: Artificial
Intelligence in Medicine 56.3 (2012), pp. 157–172. ISSN: 0933-3657. DOI:
https://doi.org/10.1016/j.artmed.2012.09.002. URL: https://www.scie
ncedirect.com/science/article/pii/S0933365712001170.

[138] Infocom. Zork: The Great Underground Empire - Part I. Game [PC]. Info-
com, Cambridge, Massachusetts. Played 2017. Infocom, Dec. 1980.

[139] Barry Ip. “Narrative Structures in Computer and Video Games: Part 1:
Context, Definitions, and Initial Findings”. In: Games and Culture 6.2
(2011), pp. 103–134. DOI: 10.1177/1555412010364982. eprint: http
s://doi.org/10.1177/1555412010364982. URL: https://doi.org/10.117
7/1555412010364982.

[140] Iron Lore Entertainment. Titan Quest. Game [PC]. THQ, Agoura Hills,
California, US. Agoura Hills, California, US, June 2006.

[141] Rishabh Jain, Aaron Isaksen, Christoffer Holmgård, and Julian Togelius.
“Autoencoders for level generation, repair, and recognition”. In: Proceed-
ings of the ICCC Workshop on Computational Creativity and Games. 2016,
p. 9.

206 | Bibliography

[142] Mark R. Johnson. “Towards qualitative procedural generation”. In: Pro-
ceedings of Computational Creativity and Games Workshop 2016 (CCGW16).
Paris, France, 2016.

[143] Mark R. Johnson. Ultima Ratio Regum. Game [PC]. July 2012.

[144] Annette Karmiloff-Smith. “Language and cognitive processes from a de-
velopmental perspective”. In: Language and cognitive processes 1.1 (1985),
pp. 61–85.

[145] Isaac Karth. “Preliminary poetics of procedural generation in games”. In:
Proc. Digital Games Research Association (2018).

[146] Manuel Kerssemakers, Jeppe Tuxen, Julian Togelius, and Georgios N Yan-
nakakis. “A procedural procedural level generator generator”. In: 2012
IEEE Conference on Computational Intelligence and Games (CIG). IEEE.
2012, pp. 335–341.

[147] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. “PC-
GRL: Procedural content generation via reinforcement learning”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment. Vol. 16. 1. 2020, pp. 95–101.

[148] Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi. “Globally coherent text
generation with neural checklist models”. In: Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing. 2016,
pp. 329–339.

[149] Klei Entertainment. Oxygen Not Included. Game [PC]. Klei Entertainment,
Vancouver, British Columbia, CA. 2019.

[150] Alexander Koller and Ronald P. A. Petrick. “Experiences with planning for
natural language generation”. In: Computational Intelligence 27.1 (2011),
pp. 23–40. DOI: https://doi.org/10.1111/j.1467-8640.2010.00370.x.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8640
.2010.00370.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111
/j.1467-8640.2010.00370.x.

[151] Max Kreminski. Epitaph. Game [Online]. Game at itch.io. https://mkre
mins.itch.io/epitaph. 2016.

[152] Karen Kukich. “Design of a knowledge-based report generator”. In: 21st
Annual Meeting of the Association for Computational Linguistics. 1983,
pp. 145–150.

[153] Quinn Kybartas and Rafael Bidarra. “A Survey on Story Generation Tech-
niques for Authoring Computational Narratives”. In: IEEE Transactions
on Computational Intelligence and AI in Games 9.3 (Sept. 2017), pp. 239–
253. ISSN: 1943068X. DOI: 10.1109/TCIAIG.2016.2546063.

Bibliography | 207

[154] Quinn Kybartas, Rafael Bidarra, John-Jules Ch Meyer, et al. “Procedural
generation of populations for storytelling”. In: Proc. PCG 2015-Workshop
on Procedural Content Generation for Games, co-located with the Tenth
International Conference on the Foundations of Digital Games (IKBC15),
2015. 2016.

[155] Quinn Kybartas and Clark Verbrugge. “Analysis of ReGEN as a graph-
rewriting system for quest generation”. In: IEEE Transactions on Compu-
tational Intelligence and AI in Games 6.2 (2014), pp. 228–242.

[156] Peter Landwehr, Jana Diesner, and Kathleen M. Carley. “The Words of
Warcraft: relational text analysis of quests in an MMORPG”. In: DiGRA
’09 - Proceedings of the 2009 DiGRA International Conference: Breaking
New Ground: Innovation in Games, Play, Practice and Theory. Brunel Uni-
versity, Sept. 2009. URL: http://www.digra.org/wp-content/uploads/di
gital-library/09287.34363.pdf.

[157] Alon Lavie and Abhaya Agarwal. “METEOR: An Automatic Metric for MT
Evaluation with High Levels of Correlation with Human Judgments”. In:
Proceedings of the Second Workshop on Statistical Machine Translation.
Prague, Czech Republic: Association for Computational Linguistics, June
2007, pp. 228–231. URL: https://www.aclweb.org/anthology/W07-073
4.

[158] Michael Lebowitz. “Creating a Story-Telling Universe”. In: Proceedings
of the Eighth International Joint Conference on Artificial Intelligence - Vol-
ume 1. IJCAI’83. Karlsruhe, West Germany: Morgan Kaufmann Publishers
Inc., 1983, pp. 63–65.

[159] Michael Lebowitz. “Planning stories”. In: Proceedings of the 9th annual
conference of the cognitive science society. 1987, pp. 234–242.

[160] Chris van der Lee, Emiel Krahmer, and Sander Wubben. “PASS: A Dutch
data-to-text system for soccer, targeted towards specific audiences”. In:
Proceedings of the 10th International Conference on Natural Language Gen-
eration. 2017, pp. 95–104.

[161] Daniel Lee, Dayi Lin, Cor-Paul Bezemer, and Ahmed E Hassan. “Building
the perfect game–an empirical study of game modifications”. In: Empiri-
cal Software Engineering (2020), pp. 1–34.

[162] Scott Lee, Aaron Isaksen, Christoffer Holmgård, and Julian Togelius. “Pre-
dicting resource locations in game maps using deep convolutional neural
networks”. In: Twelfth Artificial Intelligence and Interactive Digital Enter-
tainment Conference. 2016.

208 | Bibliography

[163] Leo Leppänen, Myriam Munezero, Stefanie Sirén-Heikel, Mark Granroth-
Wilding, and Hannu Toivonen. “Finding and Expressing News from Struc-
tured Data”. In: Proceedings of the 21st International Academic Mindtrek
Conference. AcademicMindtrek ’17. Tampere, Finland: Association for Com-
puting Machinery, 2017, pp. 174–183. ISBN: 9781450354264. DOI: 10.1
145/3131085.3131112. URL: https://doi.org/10.1145/3131085.31311
12.

[164] Jonathan Lessard, Etienne Brunelle-Leclerc, Timothy Gottschalk, Marc-
Antoine Jetté-Léger, Odile Prouveur, and Christopher Tan. “Striving for
Author-Friendly Procedural Dialogue Generation”. In: Proceedings of the
12th International Conference on the Foundations of Digital Games. FDG
’17. Hyannis, Massachusetts: Association for Computing Machinery, 2017.
ISBN: 9781450353199. DOI: 10.1145/3102071.3116219. URL: https://d
oi.org/10.1145/3102071.3116219.

[165] Boyang Li, Stephen Lee-Urban, George Johnston, and Mark O. Riedl.
“Story generation with crowdsourced plot graphs”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 27. 1. 2013, pp. 598–604.

[166] Boyang Li, Stephen Lee-Urban, and Mark O. Riedl. “Crowdsourcing in-
teractive fiction games.” In: FDG. 2013, pp. 431–432.

[167] Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jian-
feng Gao. “Deep Reinforcement Learning for Dialogue Generation”. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing. Austin, Texas: Association for Computational Linguis-
tics, Nov. 2016, pp. 1192–1202. DOI: 10 . 18653 / v1 / D16 - 1127. URL:
https://www.aclweb.org/anthology/D16-1127.

[168] Antonios Liapis and Georgios N. Yannakakis. “Boosting Computational
Creativity with Human Interaction in Mixed-Initiative Co-Creation Tasks”.
In: Proceedings of the ICCC workshop on Computational Creativity and
Games. 2016.

[169] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Sum-
maries”. In: Text Summarization Branches Out. Barcelona, Spain: Asso-
ciation for Computational Linguistics, July 2004, pp. 74–81. URL: https:
//www.aclweb.org/anthology/W04-1013.

[170] Zeming Lin, Jonas Gehring, Vasil Khalidov, and Gabriel Synnaeve. “Star-
data: A StarCraft AI research dataset”. In: Thirteenth Artificial Intelligence
and Interactive Digital Entertainment Conference. 2017.

[171] Carl-Gustav Linden. “Decades of Automation in the Newsroom”. In: Dig-
ital Journalism 5.2 (2017), pp. 123–140. DOI: 10.1080/21670811.2016
.1160791. eprint: https://doi.org/10.1080/21670811.2016.1160791.
URL: https://doi.org/10.1080/21670811.2016.1160791.

Bibliography | 209

[172] Hugo Liu and Push Singh. “ConceptNet — a practical commonsense rea-
soning tool-kit”. In: BT technology journal 22.4 (2004), pp. 211–226.

[173] Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N
Yannakakis, and Julian Togelius. “Deep learning for procedural content
generation”. In: Neural Computing and Applications 33.1 (2021), pp. 19–
37.

[174] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
“RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: CoRR
abs/1907.11692 (2019). arXiv: 1907.11692. URL: http://arxiv.org/abs
/1907.11692.

[175] Ricardo Lopes and Rafael Bidarra. “Adaptivity challenges in games and
simulations: a survey”. In: IEEE Transactions on Computational Intelli-
gence and AI in Games 3.2 (2011), pp. 85–99.

[176] Ludeon Studios. RimWorld. Game [PC]. Ludeon Studios, Ottawa, On-
tario, CA. 2018.

[177] Stephanie M. Lukin, James O. Ryan, and Marilyn A. Walker. “Automating
direct speech variations in stories and games”. In: Tenth Artificial Intelli-
gence and Interactive Digital Entertainment Conference. 2014.

[178] MachineGames. Wolfenstein: The New Order. Game [PC]. Bethesda Soft-
works, Rockville, Maryland. 2014.

[179] Yana Malysheva. “Dynamic quest generation in Micro Missions”. In: 2012
IEEE International Games Innovation Conference. IEEE. 2012, pp. 1–3.

[180] Chris Martens. “Ceptre: A language for modeling generative interactive
systems”. In: Eleventh Artificial Intelligence and Interactive Digital Enter-
tainment Conference. 2015.

[181] Colin Charles Mathews and Nia Wearn. “How are modern video games
marketed?” In: The Computer Games Journal 5.1 (2016), pp. 23–37.

[182] Maxis. SimCity 2000. Game [PC]. Maxis Software Inc./Electronic Arts.
Maxis, 1996.

[183] Maxis. SimCity 3000. Game [PC]. Maxis Software Inc./Electronic Arts.
Maxis, 1999.

[184] Jeffrey D McGovern and Gavin Scott. “EloquentRobot: A tool for auto-
matic poetry generation”. In: Proceedings of the Seventh ACM Conference
on Bioinformatics, Computational Biology, and Health Informatics. 2016.

[185] James R Meehan. “TALE-SPIN, An Interactive Program that Writes Sto-
ries”. In: IJCAI. R. Schank (ed.). Inside Computer Understanding. Hills-
dale: Lawrence Erlbaum, 197–225. 1977.

210 | Bibliography

[186] Nick Montfort. “Curveship: An Interactive Fiction System for Interactive
Narrating”. In: Proceedings of the Workshop on Computational Approaches
to Linguistic Creativity. Boulder, Colorado: Association for Computational
Linguistics, June 2009, pp. 55–62. URL: https://www.aclweb.org/anthol
ogy/W09-2008.

[187] Nick Montfort. “Generating narrative variation in interactive fiction”.
PhD thesis. University of Pennsylvania, 2007.

[188] Nick Montfort. New Novel Machines: Nanowatt and World Clock. Trope
Tank Technical Report TROPE-13–03, July 2014. 2014.

[189] Jane Morris and Graeme Hirst. “Lexical cohesion computed by thesaural
relations as an indicator of the structure of text”. In: Computational lin-
guistics 17.1 (1991), pp. 21–48.

[190] Christopher Moser and Xiaowen Fang. “Narrative structure and player
experience in role-playing games”. In: International Journal of Human-
Computer Interaction 31.2 (2015), pp. 146–156.

[191] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh,
Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. “A
Corpus and Cloze Evaluation for Deeper Understanding of Commonsense
Stories”. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. San Diego, California: Association for Computational Lin-
guistics, June 2016, pp. 839–849. DOI: 10.18653/v1/N16-1098. URL:
https://www.aclweb.org/anthology/N16-1098.

[192] MTG Wiki: David Howell. Online. Online. Retrieved September 14, 2021
from https://mtg.fandom.com/wiki/David_Howell.

[193] Daniel Muriel and Garry Crawford. Video games as culture: considering
the role and importance of video games in contemporary society. Routledge,
2018.

[194] Courtney Napoles, Matthew Gormley, and Benjamin Van Durme. “An-
notated GigaWord”. In: Proceedings of the Joint Workshop on Automatic
Knowledge Base Construction and Web-scale Knowledge Extraction. Associ-
ation for Computational Linguistics. 2012, pp. 95–100.

[195] Liubov Nesterenko. “Building a System for Stock News Generation in
Russian”. In: Proceedings of the 2nd International Workshop on Natural
Language Generation and the Semantic Web (WebNLG 2016). Edinburgh,
Scotland: Association for Computational Linguistics, Sept. 2016, pp. 37–
40. URL: https://www.aclweb.org/anthology/W16-3507.

[196] Nintendo R&D1 and Intelligent Systems. Super Metroid. Game [SNES].
Nintendo, Kyoto, Japan. Kyoto, Japan, Apr. 1994.

Bibliography | 211

[197] Obsidian Entertainment. Pillars of Eternity. Game [PC]. Paradox Interac-
tive, Stockholm, Sweden. Played December 2019. Stockholm, Sweden,
Mar. 2015.

[198] Hugo Gonçalo Oliveira. “A survey on intelligent poetry generation: Lan-
guages, features, techniques, reutilisation and evaluation”. In: Proceed-
ings of the 10th International Conference on Natural Language Generation.
2017, pp. 11–20.

[199] Curtis Onuczko, Duane Szafron, Jonathan Schaeffer, Maria Cutumisu,
Jeff Siegel, Kevin Waugh, and Allan Schumacher. “A Demonstration of
SQUEGE: A CRPG Sub-Quest Generator”. In: Proceedings of the Third
AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment. AIIDE’07. Stanford, California: AAAI Press, 2007, pp. 110–111.

[200] Jeff Orkin and Deb Roy. “The restaurant game: Learning social behavior
and language from thousands of players online”. In: Journal of Game
Development 3.1 (2007), pp. 39–60.

[201] Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent Romary. “Asyn-
chronous pipelines for processing huge corpora on medium to low re-
source infrastructures”. en. In: ed. by Piotr Bański, Adrien Barbaresi,
Hanno Biber, Evelyn Breiteneder, Simon Clematide, Marc Kupietz, Har-
ald Lüngen, and Caroline Iliadi. Proceedings of the Workshop on Chal-
lenges in the Management of Large Corpora (CMLC-7) 2019. Cardiff,
22nd July 2019. Mannheim: Leibniz-Institut für Deutsche Sprache, 2019,
pp. 9–16. DOI: 10.14618/ids-pub-9021. URL: http://nbn-resolving.de/u
rn:nbn:de:bsz:mh39-90215.

[202] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “Bleu: a
Method for Automatic Evaluation of Machine Translation”. In: Proceed-
ings of the 40th Annual Meeting of the Association for Computational Lin-
guistics. Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics, July 2002, pp. 311–318. DOI: 10.3115/1073083.1073135.
URL: https://www.aclweb.org/anthology/P02-1040.

[203] Ronald Petrick and Mary Ellen Foster. “Planning for social interaction in
a robot bartender domain”. In: Proceedings of the International Conference
on Automated Planning and Scheduling. Vol. 23. 1. 2013.

[204] Kelsey Piper. An AI helped us write this article. An impressive new language
AI writes product reviews and news articles. Its creators are worried about
misuse. Vox, Future Perfect. Published February 14, 2019. Retrieved Au-
gust 11, 2021 from https://www.vox.com/future-perfect/2019/2/14
/18222270/artificial-intelligence-open-ai-natural-language-processing.
Feb. 2019.

212 | Bibliography

[205] David Plans and Davide Morelli. “Experience-driven procedural music
generation for games”. In: IEEE Transactions on Computational Intelli-
gence and AI in Games 4.3 (2012), pp. 192–198.

[206] Yevgeniy Puzikov and Iryna Gurevych. “E2E NLG Challenge: Neural Mod-
els vs. Templates”. In: Proceedings of the 11th International Conference on
Natural Language Generation. Tilburg University, The Netherlands: As-
sociation for Computational Linguistics, Nov. 2018, pp. 463–471. DOI:
10.18653/v1/W18-6557. URL: https://www.aclweb.org/anthology/W1
8-6557.

[207] Katyanna Quach. This news article about the full public release of OpenAI’s
’dangerous’ GPT-2 model was part written by GPT-2. The Register, Soft-
ware, AI + ML. Published November 6, 2019. Retrieved August 11, 2021
from https://www.theregister.com/2019/11/06/openai_gpt2_released
/. Nov. 2019.

[208] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
“Improving language understanding by generative pre-training”. In: (2018).
https://cdn.openai.com/research-covers/language-unsupervised/langu
age_understanding_paper.pdf. Retrieved April 8, 2021.

[209] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. “Language models are unsupervised multitask learners”.
In: (2019). https ://github .com/openai/gpt - 2. Retrieved August 31,
2020.

[210] Aaron A Reed. “Sharing authoring with algorithms: Procedural genera-
tion of satellite sentences in text-based interactive stories”. In: Proceed-
ings of The third workshop on Procedural Content Generation in Games.
ACM. Raleigh, North Carolina, 2012.

[211] Ehud Reiter. “An architecture for data-to-text systems”. In: Proceedings of
the Eleventh European Workshop on Natural Language Generation. Associ-
ation for Computational Linguistics. 2007, pp. 97–104.

[212] Ehud Reiter. “NLG vs. templates”. In: Proceedings of the Fifth European
Workshop on Natural Language Generation. Leiden, the Netherlands, 1995,
pp. 95–105.

[213] Ehud Reiter and Robert Dale. “Building applied natural language gen-
eration systems”. In: Natural Language Engineering 3.1 (1997), pp. 57–
87.

[214] Ehud Reiter, Roma Robertson, and Liesl M Osman. “Lessons from a fail-
ure: Generating tailored smoking cessation letters”. In: Artificial Intelli-
gence 144.1-2 (2003), pp. 41–58.

[215] Mark O Riedl and R. Michael Young. “Narrative planning: Balancing plot
and character”. In: Journal of Artificial Intelligence Research 39 (2010),
pp. 217–268.

Bibliography | 213

[216] Mark O. Riedl and R. Michael Young. “An intent-driven planner for multi-
agent story generation”. In: Autonomous Agents and Multiagent Systems,
International Joint Conference on. Vol. 2. IEEE Computer Society. 2004,
pp. 186–193.

[217] Alan Ritter, Colin Cherry, and William B. Dolan. “Data-Driven Response
Generation in Social Media”. In: Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing. Edinburgh, Scotland,
UK.: Association for Computational Linguistics, July 2011, pp. 583–593.
URL: https://www.aclweb.org/anthology/D11-1054.

[218] Justus Robertson and R Michael Young. “Automated gameplay genera-
tion from declarative world representations”. In: Eleventh Artificial Intel-
ligence and Interactive Digital Entertainment Conference. 2015.

[219] Rockstar Studios. Red Dead Redemption 2. Game [PC]. Rockstar Games,
New York City, New York, United States. Played February 2021. New York
City, New York, United States, Nov. 2019.

[220] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and
Kate Saenko. “Object Hallucination in Image Captioning”. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Process-
ing. Brussels, Belgium: Association for Computational Linguistics, Oct.
2018, pp. 4035–4045. DOI: 10.18653/v1/D18-1437. URL: https://aclan
thology.org/D18-1437.

[221] Samuel Rönnqvist, Jenna Kanerva, Tapio Salakoski, and Filip Ginter. “Is
Multilingual BERT Fluent in Language Generation?” In: Proceedings of
the First NLPL Workshop on Deep Learning for Natural Language Process-
ing. Turku, Finland: Linköping University Electronic Press, Sept. 2019,
pp. 29–36. URL: https://www.aclweb.org/anthology/W19-6204.

[222] Runic Games. Torchlight II. Game [PC]. Runic Games, Seattle, Washing-
ton, US. Runic Games, 2012.

[223] James Ryan, Ethan Seither, Michael Mateas, and Noah Wardrip-Fruin.
“Expressionist: An authoring tool for in-game text generation”. In: In-
ternational Conference on Interactive Digital Storytelling. Springer. 2016,
pp. 221–233.

[224] James O. Ryan, Tyler Brothers, Michael Mateas, and Noah Wardrip-Fruin.
“Juke joint: characters who are moved by music”. In: Proc. Experimental
AI in Games (2016).

[225] James O. Ryan, Michael Mateas, and Noah Wardrip-Fruin. “Characters
who speak their minds: Dialogue generation in Talk of the Town”. In:
Twelfth Artificial Intelligence and Interactive Digital Entertainment Confer-
ence. 2016.

214 | Bibliography

[226] James O. Ryan, Michael Mateas, and Noah Wardrip-Fruin. “Open design
challenges for interactive emergent narrative”. In: International Confer-
ence on Interactive Digital Storytelling. Springer. 2015, pp. 14–26.

[227] James O. Ryan, Adam Summerville, Michael Mateas, and Noah Wardrip-
Fruin. “Toward characters who observe, tell, misremember, and lie”. In:
Proc. Experimental AI in Games 2 (2015).

[228] James O. Ryan, Adam J. Summerville, and Ben Samuel. “Bad News: A
game of death and communication”. In: Proceedings of the 2016 CHI Con-
ference Extended Abstracts on Human Factors in Computing Systems. 2016,
pp. 160–163.

[229] James Owen Ryan, Casey Barackman, Nicholas Kontje, Taylor Owen-
Milner, Marilyn A. Walker, Michael Mateas, and Noah Wardrip-Fruin.
“Combinatorial dialogue authoring”. In: International Conference on In-
teractive Digital Storytelling. Springer. 2014, pp. 13–24.

[230] Christoph Salge, Michael Cerny Green, Rodrigo Canaan, Filip Skwarski,
Rafael Fritsch, Adrian Brightmoore, Shaofang Ye, Changxing Cao, and
Julian Togelius. “The AI settlement generation challenge in minecraft”.
In: KI-Künstliche Intelligenz 34.1 (2020), pp. 19–31.

[231] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. “Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter”.
In: CoRR abs/1910.01108 (2019). arXiv: 1910.01108. URL: http://arxiv
.org/abs/1910.01108.

[232] Laura Scheuter. “Does it make sense? Analyzing coherence in longer fic-
tional discourse on a syntactic and semantic level”. Master thesis. 2021.

[233] Björn Schlünder and Ralf Klabunde. “Greetings Generation in Video Role
Playing Games”. In: Proceedings of the 14th European Workshop on Natu-
ral Language Generation. 2013, pp. 167–171.

[234] Anne Schneider, Alasdair Mort, Chris Mellish, Ehud Reiter, Phil Wilson,
and Pierre-Luc Vaudry. “MIME- NLG Support for Complex and Unstable
Pre-hospital Emergencies”. In: Proceedings of the 14th European Work-
shop on Natural Language Generation. Sofia, Bulgaria: Association for
Computational Linguistics, Aug. 2013, pp. 198–199. URL: https://ww
w.aclweb.org/anthology/W13-2128.

[235] Jason Schreier. Blood, sweat, and pixels: The triumphant, turbulent stories
behind how video games are made. Harper, 2017.

[236] Lauren R. Shapiro and Judith A. Hudson. “Tell me a make-believe story:
Coherence and cohesion in young children’s picture-elicited narratives”.
In: Developmental Psychology 27.6 (1991), pp. 960–974.

Bibliography | 215

[237] Shi-Qi Shen, Yan-Kai Lin, Cun-Chao Tu, Yu Zhao, Zhi-Yuan Liu, Mao-Song
Sun, et al. “Recent advances on neural headline generation”. In: Journal
of Computer Science and Technology 32.4 (2017), pp. 768–784.

[238] Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng.
“The Woman Worked as a Babysitter: On Biases in Language Genera-
tion”. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Asso-
ciation for Computational Linguistics, Nov. 2019, pp. 3407–3412. DOI:
10.18653/v1/D19-1339. URL: https://www.aclweb.org/anthology/D19
-1339.

[239] Igor Shevchenko. NaNoGenMo: как компьютеры пишут новеллы [Na-
NoGenMo: how computers write novels]. Online. Retrieved February 16,
2022 from https://habr.com/en/post/313862/. 2016.

[240] Tanya X Short and Tarn Adams, eds. Procedural Generation in Game De-
sign. AK Peters/CRC Press, 2017.

[241] Tanya X Short and Tarn Adams. Procedural Storytelling in Game Design.
CRC Press, 2019.

[242] Vered Shwartz, Rachel Rudinger, and Oyvind Tafjord. ““You are grounded!”:
Latent Name Artifacts in Pre-trained Language Models”. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Online: Association for Computational Linguistics, Nov.
2020, pp. 6850–6861. DOI: 10.18653/v1/2020.emnlp-main.556. URL:
https://aclanthology.org/2020.emnlp-main.556.

[243] Adam M Smith and Michael Mateas. “Answer set programming for pro-
cedural content generation: A design space approach”. In: IEEE Transac-
tions on Computational Intelligence and AI in Games 3.3 (2011), pp. 187–
200.

[244] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-
Voss, Jeff Wu, Alec Radford, and Jasmine Wang. “Release Strategies and
the Social Impacts of Language Models”. In: CoRR abs/1908.09203 (2019).
arXiv: 1908.09203. URL: http://arxiv.org/abs/1908.09203.

[245] Karen Spärck Jones and Julia R. Galliers. Evaluating natural language
processing systems: An analysis and review. Vol. 1083. Lecture Notes in
Computer Science. Springer Science & Business Media, 1996.

[246] Robyn Speer, Joshua Chin, and Catherine Havasi. “ConceptNet 5.5: An
Open Multilingual Graph of General Knowledge”. In: 2017, pp. 4444–
4451. URL: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/1
4972.

216 | Bibliography

[247] Sharon L Spencer and Jill Fitzgerald. “Validity and structure, coherence,
and quality measures in writing”. In: Journal of Reading Behavior 25.2
(1993), pp. 209–231.

[248] Squad. Kerbal Space Program. Game [PC]. Private Division, New York
City, New York, US. 2015.

[249] Judith van Stegeren and Jakub Myśliwiec. “Fine-tuning GPT-2 on anno-
tated RPG quests for NPC dialogue generation”. In: Proceedings of the
16th International Conference on the Foundations of Digital Games (FDG)
2021. FDG ’21. Online: ACM, Aug. 2021.

[250] Judith van Stegeren and Mariët Theune. “Churnalist: Fictional Headline
Generation for Context-appropriate Flavor Text”. In: Proceedings of the
Tenth International Conference on Computational Creativity. ICCC ’19.
Charlotte, NC, USA: Association for Computational Creativity (ACC),
2019, pp. 65–72.

[251] Judith van Stegeren and Mariët Theune. “Fantastic Strings and Where to
Find Them: The Quest for High-Quality Video Game Text Corpora”. In:
Proceedings of the 2020 Workshop on Intelligent Narrative Technologies.
Oct. 2020.

[252] Judith van Stegeren and Mariët Theune. “Narrative Generation in the
Wild: Methods from NaNoGenMo”. In: Proceedings of the Second Work-
shop on Storytelling. Florence, Italy: Association for Computational Lin-
guistics, Aug. 2019, pp. 65–74. URL: https://www.aclweb.org/antholog
y/W19-3407.

[253] Judith van Stegeren and Mariët Theune. “Remixing Headlines for Context-
Appropriate Flavor Text”. In: Proceedings of the IEEE Conference On Games.
London, UK: IEEE, Aug. 2019.

[254] Judith van Stegeren and Mariët Theune. “Towards Generating Textual
Game Assets from Real-world Data”. In: Proceedings of the 13th Interna-
tional Conference on the Foundations of Digital Games. FDG ’18. Malmö,
Sweden: ACM, 2018, 43:1–43:4. ISBN: 978-1-4503-6571-0. DOI: 10.114
5/3235765.3235809. URL: http://doi.acm.org/10.1145/3235765.3235
809.

[255] Andrew Stockdale. “ClueGen: An exploration of procedural storytelling
in the format of murder mystery games”. In: Twelfth Artificial Intelligence
and Interactive Digital Entertainment Conference. 2016.

[256] Christina R. Strong, Manish Mehta, Kinshuk Mishra, Alistair Jones, and
Ashwin Ram. “Emotionally Driven Natural Language Generation for Per-
sonality Rich Characters in Interactive Games.” In: Proceedings of the
Third Artificial Intelligence and Interactive Digital Entertainment (AIIDE).
2007, pp. 98–100.

Bibliography | 217

[257] Anne Sullivan, Mirjam Palosaari Eladhari, and Michael Cook. “Tarot-
based narrative generation”. In: Proceedings of the 13th International Con-
ference on the Foundations of Digital Games. ACM. 2018, p. 54.

[258] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius. “Procedural Content Generation
via Machine Learning (PCGML)”. In: IEEE Transactions on Games 10.3
(2018), pp. 257–270.

[259] Adam Summerville, Sam Snodgrass, Michael Mateas, and Santiago On-
tanón. “The VGLC: The video game level corpus”. In: Proceedings of the
7th Workshop on Procedural Content Generation. Aug. 2016.

[260] Adam J. Summerville and Michael Mateas. “Super Mario as a String: Plat-
former Level Generation Via LSTMs”. In: DiGRA/FDG ’16 - Proceedings of
the First International Joint Conference of DiGRA and FDG. 2016.

[261] Petra Sundström. Exploring the Affective Loop. Licentiate thesis. 2005.

[262] Ivo Swartjes and Mariët Theune. “The virtual storyteller: Story genera-
tion by simulation”. In: BNAIC. 2008, pp. 257–264.

[263] Alan Tapscott, Carlos León, and Pablo Gervás. “Generating Stories Us-
ing Role-playing Games and Simulated Human-like Conversations”. In:
Proceedings of the 3rd Workshop on Computational Creativity in Natural
Language Generation (CC-NLG 2018). 2018, pp. 34–42.

[264] The Sims. Game [PC].

[265] Mariët Theune, Esther Klabbers, Jan-Roelof de Pijper, Emiel Krahmer,
and Jan Odijk. “From data to speech: a general approach”. In: Natural
Language Engineering 7.1 (2001), pp. 47–86.

[266] Mariët Theune, Nanda Slabbers, and Feikje Hielkema. “The Narrator:
NLG for digital storytelling”. In: Proceedings of the Eleventh European
Workshop on Natural Language Generation. Saarbrücken, Germany, June
2007, pp. 109–112. URL: https://www.aclweb.org/anthology/W07-231
7.

[267] Julien “Orteil" Thiennot. Cookie Clicker. Game [PC/Browser]. Aug. 2013.

[268] Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N. Yannakakis.
“What is Procedural Content Generation? Mario on the Borderline”. In:
Proceedings of the 2nd International Workshop on Procedural Content Gen-
eration in Games. PCGames ’11. Bordeaux, France: Association for Com-
puting Machinery, 2011. ISBN: 9781450308724. DOI: 10.1145/2000919
.2000922. URL: https://doi.org/10.1145/2000919.2000922.

[269] Julian Togelius, Mike Preuss, Nicola Beume, Simon Wessing, Johan Hagel-
bäck, and Georgios N Yannakakis. “Multiobjective exploration of the star-
craft map space”. In: Proceedings of the 2010 IEEE Conference on Compu-
tational Intelligence and Games. IEEE. 2010, pp. 265–272.

218 | Bibliography

[270] Julian Togelius and Jurgen Schmidhuber. “An experiment in automatic
game design”. In: 2008 IEEE Symposium On Computational Intelligence
and Games. IEEE. 2008, pp. 111–118.

[271] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. “Search-based procedural content generation: A taxonomy and
survey”. In: IEEE Transactions on Computational Intelligence and AI in
Games 3.3 (2011), pp. 172–186.

[272] Rijnard van Tonder, Asher Trockman, and Claire Le Goues. “A panel
data set of cryptocurrency development activity on GitHub”. In: 2019
IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). IEEE. 2019, pp. 186–190.

[273] Peter Unold, Claus Leth Gregersen, Allan Ove Kjeldbjerg, and The Freeciv
project. Freeciv. Game [PC]. https://github.com/freeciv/. 1996.

[274] Alberto Uriarte and Santiago Ontañón. “PSMAGE: Balanced map genera-
tion for StarCraft”. In: 2013 IEEE Conference on Computational Inteligence
in Games (CIG). 2013, pp. 1–8. DOI: 10.1109/CIG.2013.6633644.

[275] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is All
you Need”. In: Advances in Neural Information Processing Systems. Ed.
by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. URL:
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd
053c1c4a845aa-Paper.pdf.

[276] Tony Veale. “The shape of tweets to come: Automating language play
in social networks”. In: Multiple Perspectives on Language Play. Language
Play and Creativity 1 (2016), pp. 73–92.

[277] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. “CIDEr:
Consensus-based image description evaluation”. In: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 4566–
4575. DOI: 10.1109/CVPR.2015.7299087.

[278] Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso
Caselli, Gertjan van Noord, and Malvina Nissim. BERTje: A Dutch BERT
Model. arXiv:1912.09582. Dec. 2019. URL: http://arxiv.org/abs/1912.0
9582.

[279] Wietse de Vries and Malvina Nissim. “As good as new. How to success-
fully recycle English GPT-2 to make models for other languages”. In:
CoRR abs/2012.05628 (2020). arXiv: 2012.05628. URL: https://arxiv
.org/abs/2012.05628.

Bibliography | 219

[280] Marilyn A. Walker, Ricky Grant, Jennifer Sawyer, Grace I. Lin, Noah
Wardrip-Fruin, and Michael Buell. “Perceived or not perceived: Film char-
acter models for expressive NLG”. In: International Conference on Inter-
active Digital Storytelling. Springer. 2011, pp. 109–121.

[281] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh.
“Universal Adversarial Triggers for Attacking and Analyzing NLP”. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 2153–2162. DOI: 10.18653/v
1/D19-1221. URL: https://aclanthology.org/D19-1221.

[282] Nick Walton. AI Dungeon. Game [PC, Android, IOS]. https://www.aidun
geon.io. Latitude Games, 2019.

[283] Alex Wang and Kyunghyun Cho. “BERT has a Mouth, and It Must Speak:
BERT as a Markov Random Field Language Model”. In: Proceedings of
the Workshop on Methods for Optimizing and Evaluating Neural Language
Generation. Minneapolis, Minnesota: Association for Computational Lin-
guistics, June 2019, pp. 30–36. DOI: 10 . 18653 / v1 / W19 - 2304. URL:
https://www.aclweb.org/anthology/W19-2304.

[284] Noah Wardrip-Fruin. Expressive Processing: Digital Fictions, Computer Games,
and Software Studies. The MIT Press, 2009. ISBN: 0262013436.

[285] Michael Witwer, Kyle Newman, Jon Peterson, and Sam Witwer. Dungeons
& Dragons Art & Arcana: A Visual History. Ten Speed Press, 2018.

[286] Wizards of the Coast. Magic: The Gathering: How to play. Online. Online.
Retrieved September 16, 2021 from https://magic.wizards.com/en/ma
gic-gameplay.

[287] Yager Development. Spec Ops: The Line. Game [PC, Linux]. 2K Games,
Novato, California, US. 2012.

[288] Georgios N. Yannakakis and Julian Togelius. “Experience-driven proce-
dural content generation”. In: IEEE Transactions on Affective Computing
2.3 (2011), pp. 147–161.

[289] Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin Knight, Dongyan Zhao,
and Rui Yan. “Plan-And-Write: Towards Better Automatic Storytelling”.
In: Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). 2019.

[290] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi,
Franziska Roesner, and Yejin Choi. “Defending Against Neural Fake News”.
In: Advances in Neural Information Processing Systems 32. Ed. by H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Gar-
nett. Curran Associates, Inc., 2019, pp. 9054–9065. URL: http://papers
.nips.cc/paper/9106-defending-against-neural-fake-news.pdf.

220 | Bibliography

[291] ZeniMax Online Studios. The Elder Scrolls Online. Game [PC]. Bethesda
Softworks, Rockville, Maryland, US. Bethesda Softworks, 2014.

[292] Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra, and G Michael
Youngblood. “Explainable AI for designers: A human-centered perspec-
tive on mixed-initiative co-creation”. In: 2018 IEEE Conference on Com-
putational Intelligence and Games (CIG). IEEE. 2018, pp. 1–8.

[293] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang,
and Yong Yu. “Texygen: A Benchmarking Platform for Text Generation
Models”. In: The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. SIGIR ’18. Ann Arbor, MI, USA: As-
sociation for Computing Machinery, 2018, pp. 1097–1100. ISBN: 9781450356572.
DOI: 10.1145/3209978.3210080. URL: https://doi.org/10.1145/32099
78.3210080.

222 | Summary

Summary

Role-playing video games allow us to immerse ourselves in virtual worlds and
take on the role of virtual characters. To help the player with immersion, these
games often contain “flavor text”: colourful decorative texts, such as item de-
scriptions or dialogues with non-player characters, that help bring the game
world and its narrative to life. Flavor text supports the game’s narrative. It
provides context for the events happening in the game, and justification for the
player’s actions.

As an example of flavor text, let’s look at action game Diablo III (Blizzard,
2012). In Diablo III, players can find gold and treasure as a reward for slay-
ing monsters and completing quests. One of these treasures is a legendary ring
called “Leoric’s signet.” This rare item has its own flavor text, which hints at the
corrupted original owner of the jewel, a recurring antagonist in the Diablo series:

King Leoric had hoped to pass along the symbol of his family’s noble
lineage to his first son before they met an unfortunate fate.

This example illustrates the power of flavor text: this short piece of text tells
us a bit of the backstory of an important character, thus giving more depth to
Diablo’s game world.

Video games are getting more and more extensive, which means that they
also need more and more content, including flavor text. Normally, flavor text is
written by specialized writers. This dissertation investigates how we can auto-
matically create flavor text using natural language generation, or NLG. Language
generation is part of natural language processing (NLP), the research field that
combines computer science and linguistics. Generating flavor text is also part of
procedural content generation (PCG), the field that examines how we can au-
tomatically generate (game) content, such as music, levels, textures, images, or
even complete games. Relevant developments from these two fields are discussed
in Chapter 2 and 3.

Most research on NLG is concerned with the creation of non-fiction text, such
as text for information systems and expert systems, rather than fiction, such as
stories, poetry, and video game texts. Good fictional texts have very different
properties than good non-fiction texts, which means generating fiction requires

224 | Summary

a different approach than generating non-fiction. Therefore, in Chapter 4 of
this dissertation, we look at story generation to gain inspiration for flavor text
generation. In Chapters 5, 6 and 7 we examine different text generators for
flavor text. The flavor text in this thesis was created using (1) a formal rule-based
text generator and (2) multiple text generators that build on a deep learning
language model called GPT-2. GPT-2 is particularly good at generating coherent,
non-factual texts, so it is well suited for generating fiction.

GPT-2 can learn new tasks based on examples. In this dissertation, the task is
to generate flavor text with a particular form (headlines) or content (flavor text
about space ships for a science fiction game). Teaching GPT-2 this task requires
a large amount of video game texts that can serve as examples. Video game text
datasets are still very scarce at the moment. That is why I have developed several
new datasets with video game texts from existing roleplaying video games. These
datasets, or corpora, are discussed in Chapter 8.

Because game text, including flavor text, is often very context sensitive, I also
investigated how we can communicate this in-game context to the text generator.
The generator can then integrate the in-game context into generated texts. I also
looked for ways to play with the reader’s expectations. If a text generator creates
a text that is random, boring, or contains linguistic errors, can we make the
player believe that this was precisely the intent of the generator?

226 | Samenvatting

Samenvatting

In role-playing video games, oftewel video games met een rollenspel-component,
kunnen we de rol aannemen van virtuele personages en ons onderdompelen in
een virtuele wereld. Deze games bevatten vaak “flavor text”: decoratieve tek-
sten, zoals kleurrijke beschrijvingen en dialogen met andere personages, die de
gamewereld tot leven brengen en zo de speler helpen met het opgaan in het spel.
Daarnaast ondersteunt flavor text het overkoepelende verhaal van een video
game: het biedt context voor de gebeurtenissen in het spel en rechtvaardiging
voor de acties van de speler.

Een concreet voorbeeld van flavor text vinden we in actiegame Diablo III
(Blizzard, 2012). In Diablo III kunnen spelers goudstukken en schatten vinden
als beloning voor het verslaan van monsters en het voltooien van opdrachten.
Een van deze schatten is een legendarische ring genaamd “Leoric’s signet” (Leoric’s
zegelring). Dit zeldzame juweel heeft zijn eigen flavor text, die verwijst naar
de ontaarde oorspronkelijke eigenaar, een terugkerende slechterik in de Diablo
videogame-serie:

Koning Leoric had gehoopt dit symbool van de adellijke afkomst van
zijn familie door te kunnen geven aan zijn oudste zoon, voordat zij
voortijdig tot een ongelukkig einde kwamen.

Dit voorbeeld illustreert de kracht van flavor text: dit korte stukje tekst vertelt
ons iets over de achtergrond van een belangrijk personage, en geeft zo meer
diepgang aan Diablo’s gamewereld.

Video games worden steeds uitgebreider, wat betekent dat ze ook steeds meer
inhoud nodig hebben, waaronder ook flavor text. Normaal gesproken wordt fla-
vor text geschreven door gespecialiseerde schrijvers. Dit proefschrift onderzoekt
hoe we flavor text automatisch kunnen creeëren met behulp van natuurlijke
taalgeneratie (natural language generation, of NLG). Taalgeneratie is onderdeel
van natural language processing (NLP), het onderzoeksgebied dat informatica
en taalkunde combineert. Het genereren van flavor text is ook onderdeel van
procedural content generation (PCG), het vakgebied dat onderzoekt hoe we au-
tomatisch (game) content kunnen genereren, zoals muziek, levels, textures, af-
beeldingen of zelfs complete games. Relevante ontwikkelingen uit deze twee
vakgebieden worden besproken in Hoofdstuk 2 en 3.

228 | Samenvatting

Het meeste onderzoek naar NLG houdt zich bezig met het creëren van non-
fictietekst, zoals tekst voor informatiesystemen en expert-systemen, in plaats van
fictie, zoals verhalen, poëzie en videogameteksten. Goede fictieve teksten hebben
hele andere eigenschappen dan goede non-fictie teksten, en het genereren van
fictie vereist dan ook een andere aanpak dan het automatisch creeëren van non-
fictie. In Hoofdstuk 4 van deze dissertatie bekijken we daarom story generation
(tekstgeneratie voor verhalen) om inspiratie op te doen voor flavor text gener-
ation. In Hoofdstuk 5, 6 en 7 bekijken we verschillende tekstgeneratoren voor
flavor text. De flavor text in dit proefschrift is gemaakt met (1) een op formele
regels gebaseerde tekstgenerator en (2) meerdere tekstgeneratoren die voort-
bouwen op een taalmodel gebaseerd op deep learning, genaamd GPT-2. GPT-2
is bijzonder goed in het genereren van coherente, niet-feitelijke teksten, en dus
heel geschikt voor het genereren van fictie.

GPT-2 kan nieuwe taken leren op basis van voorbeelden. In dit proefschrift
is die taak flavor text genereren met een bepaalde vorm (bijvoorbeeld flavor text
in de vorm van krantenkoppen) of inhoud (bijvoorbeeld flavor text voor een sci-
ence fiction game die gaat over ruimteschepen). Het aanleren van zo’n nieuwe
taak vereist een grote hoeveelheid videogameteksten die als voorbeeld kunnen
dienen. Datasets met videogameteksten zijn op dit moment nog erg schaars.
Daarom heb ik meerdere nieuwe datasets ontwikkeld met videogameteksten van
bestaande roleplaying video games. Deze datasets, of corpora, worden bespro-
ken in Hoofdstuk 8.

Omdat gametekst, inclusief flavor text, vaak erg contextgevoelig is, heb ik
tevens onderzocht hoe we deze in-game context kunnen doorgeven aan de tekst-
generator. De generator kan dan de in-game context integreren in gegenereerde
teksten. Tenslotte heb ik ook gezocht naar manieren om met de verwachtingen
van de lezer te spelen. Stel je voor dat een tekstgenerator een tekst maakt die
heel willekeurig is, heel saai is, of taalkundige fouten bevat. Kunnen we de speler
dan laten geloven dat dit juist precies de bedoeling van de generator was?

230 | Acknowledgements

Acknowledgements

The most valuable lessons I learned in the past four years stem from working
with others. These lessons were not about text generation, but about building
friendships, writing, coaching and collaborating.

Many people contributed to this thesis and my development as a researcher.
Firstly, I would like to thank Mariët, my daily supervisor, and Dirk, my promotor.
Mariët has a talent for bringing out the best in people. She was always available
for providing feedback on my work, answering questions and giving encourage-
ment. She was also the driving factor for any progress in my writing skills in
the past few years. Mariët frequently asked me the two most important writing
questions: “What did you want to say with this particular section?” and “And is
that what you actually wrote down?” Dirk made me see that any two topics can
be combined into a (sometimes new) scientific area: technology and food, VR
and healthcare, coaching and robots. His philosophical questions helped me to
keep a broad perspective on my research. I am grateful for the creative freedom
that I received from my supervisors. Without it, my PhD progression might have
been more straightforward, but also much less interesting.

Many thanks to the members of my thesis committee, Franciska de Jong,
Gerben Westerhof, Pieter Spronck, Ehud Reiter, and Mike Cook, who tackled this
pile of words with interest and enthusiasm. Thank you for your useful comments
and encouraging words in conference hallway tracks and online gatherings.

I am grateful to the students that I supervised over the years. I thank Thérèse
Bergsma, Jakub Myśliwiec and Laura Scheuter in particular, as their research
projects contributed to the work in this dissertation. Thérèse and Jakub eventu-
ally turned into co-authors, which is an achievement to be proud of.

I thank my fellow Data2Game members from the University of Twente, Tilburg
University, Veiligheidsregio Twente and HBA Lab for the enjoyable collabora-
tion. I am also grateful to the Dutch Research Council (NWO), which funded
the Data2Game research project. Johannes and Paris, thank you for the monthly
rides to Hengelo and the enjoyable pre- and post-meeting conversations. I thank
Thomas for the technical support.

I am grateful to my Human Media Interaction colleages for sharing their en-
thusiasm and experience. I have never encountered a research department that
was more creative and multidisciplinary than HMI. Every HMI member has at

232 | Acknowledgements

some point or other contributed significantly to this thesis, in the form of friendly
chats, companionship during coffee breaks, advice about supervising students,
teaching and writing, suggesting scientific methodology, and recommending in-
teresting papers. I would like to specifically mention Michel, for our bi-weekly
machine learning and career development sessions, Daniël for converting me to
decaf coffee, Merijn, whose sage advice helped me give shape to the first research
paper I was really happy with, and Deniece, for all the good conversations about
Life, the Universe and Everything. Jelte and Lorenzo, thank you for allowing me
to adopt the couch in your office as my favorite place for thinking (strategically
positioned right next to the coffee machine). You have also been tremendously
helpful as my paranymphs during the final stages of my PhD. A special shoutout
to Charlotte and Alice, which are the behind-the-scenes forces that keep HMI
going amid the academic chaos.

I thank the members of ICIS (now DIS) at Radboud University Nijmegen for
their inspiring teaching, and their hospitality in the Mercator building. I am es-
pecially grateful to Henk Barendregt, who taught me both vipassana meditation
and mathematics. I remember one specific lecture, when he told our class that
to become a good mathematician, you need to learn to be comfortable with hav-
ing a million wrong insights. Until you have a single right insight... and you’ve
suddenly found a new theorem! I would also like to thank Herman Geuvers,
Bart Jacobs, Alexandra Silva, and Frits Vaandrager, who gave me the first taste
of what it means to do research.

The work in this thesis builds on software and data that was generously cre-
ated and shared by video game modding communities, open source communities
and open data communities. I thank the NaNoGenMo community, as their con-
tributions led to my first published paper and the inspiration for my first flavor
text generator. The Twitter communities around procedural generation, NLP,
and video games research pointed me to various useful resources, video games,
conferences, research papers, blogposts and talks. I am also grateful to the con-
tributors of NexusMods and the Xoreos project. Without you, the dataset creation
from Chapter 8 would not have been possible. A shout-out to Michiel Werring,
who occasionally acted as my informant from the world of AAA game develop-
ment.

I am profoundly grateful for my #RU friends. I feel incredibly lucky to be part
of such a large and diverse group of friends. Without you, I would never have
finished this dissertation. There are a few subsets that deserve a special mention.
Academic fellows from #promovendi, thank you for preparing me for every as-
pect of PhD life. You kept me motivated and sane, and through you, I learned
to survive in academia. The usual suspects of our bouldering group, book club,
rock band, and film club provided welcome distraction, entertainment and good
conversations during the challenges of COVID-isolation. Besides companionship
in Overwatch, Valheim and Sea of Thieves, the people from #rugaming provided
me with many of the examples of flavor text and game narrative that can be

Acknowledgements | 233

found in this thesis. May the mead flow steadily in your Valheim halls!
Annelies, Hanne, Irene, Linda, Margot, Margot, Marlie, Marrit, Mara, I wish

every person a group of inspiring examples like you.
I thank Anton and Francis from Tacos On Tour for their amazing barbecued

food, war stories, and hilarious postcards. I would like to thank Tim (and kan-
toorkat Sam) for much-needed peer-support, great lunches and a lovely writing
environment during the final stages of this thesis.

Finally, I want to thank my family, Aad, Jacqueline, Marjo, Frank, Thijs, Linda,
and Gerdriaan, for their love and continuous support.

Judith van Stegeren
Nijmegen, February 2022

About the author

Judith van Stegeren was born on 29 September 1990, in Utrecht, The Nether-
lands. She received both a BSc degree (2013) and MSc degree (2015) in Com-
puter Science from Radboud University Nijmegen. From 2018–2021, she pur-
sued a PhD degree at the University of Twente in Enschede. Prior to joining the
Human Media Interaction research group, she worked as a digital security spe-
cialist at the Dutch National Cyber Security Centre in the Hague. Her research
interests include natural language processing, procedural art, and data engineer-
ing. A more complete overview of Judith’s curriculum vitae can be found on her
personal webpage, https://www.judithvanstegeren.com.

List of publications

Below is a list of peer-reviewed academic publications that Judith has authored
or co-authored, in reverse chronological order:

1. Judith van Stegeren and Jakub Myśliwiec. “Fine-tuning GPT-2 on anno-
tated RPG quests for NPC dialogue generation”. In: Proceedings of the 16th
International Conference on the Foundations of Digital Games (FDG) 2021.
FDG ’21. Online: ACM, Aug. 2021

2. Lorenzo Gatti and Judith van Stegeren. “Improving Dutch sentiment anal-
ysis in Pattern”. In: Computational Linguistics in the Netherlands Journal 10
(Dec. 2020)

3. Judith van Stegeren and Mariët Theune. “Fantastic Strings and Where to
Find Them: The Quest for High-Quality Video Game Text Corpora”. In:
Proceedings of the 2020 Workshop on Intelligent Narrative Technologies. Oct.
2020

4. Thérèse Bergsma, Judith van Stegeren, and Mariët Theune. “Creating a
Sentiment Lexicon with Game-Specific Words for Analyzing NPC Dialogue
in The Elder Scrolls V: Skyrim”. English. In: Workshop on Games and Natu-
ral Language Processing. Marseille, France: European Language Resources

236 | About the author

Association, May 2020, pp. 1–9. ISBN: 979-10-95546-40-5. URL: https://w
ww.aclweb.org/anthology/2020.gamnlp-1.1

5. Judith van Stegeren and Mariët Theune. “Remixing Headlines for Context-
Appropriate Flavor Text”. In: Proceedings of the IEEE Conference On Games.
London, UK: IEEE, Aug. 2019

6. Judith van Stegeren and Mariët Theune. “Narrative Generation in the Wild:
Methods from NaNoGenMo”. In: Proceedings of the Second Workshop on
Storytelling. Florence, Italy: Association for Computational Linguistics,
Aug. 2019, pp. 65–74. URL: https://www.aclweb.org/anthology/W19
-3407

7. Judith van Stegeren and Mariët Theune. “Churnalist: Fictional Head-
line Generation for Context-appropriate Flavor Text”. In: Proceedings of
the Tenth International Conference on Computational Creativity. ICCC ’19.
Charlotte, NC, USA: Association for Computational Creativity (ACC), 2019,
pp. 65–72

8. Judith van Stegeren and Mariët Theune. “Towards Generating Textual
Game Assets from Real-world Data”. In: Proceedings of the 13th Interna-
tional Conference on the Foundations of Digital Games. FDG ’18. Malmö,
Sweden: ACM, 2018, 43:1–43:4. ISBN: 978-1-4503-6571-0. DOI: 10.1145
/3235765.3235809. URL: http://doi.acm.org/10.1145/3235765.3235809

9. H Geuvers et al. “A type system for Continuation Calculus”. In: Proceed-
ings Fifth International Workshop on Classical Logic and Computation, CL&C
2014, Vienna, Austria, July 13, 2014. Ed. by Paulo Oliva. Vol. 164. EPTCS.
2014, pp. 1–18

238 | SIKS Dissertation Series

SIKS Dissertation Series

2016

2016-01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
2016-02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through decision

support: prescribing a better pill to swallow
2016-03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge Worker

Support
2016-04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
2016-05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an Applica-

tion in Explaining Missing Answers
2016-06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
2016-07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual training
2016-08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social Networks

from Unstructured Data
2016-09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cultural Arte-

facts
2016-10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
2016-11 Anne Schuth (UVA), Search Engines that Learn from Their Users
2016-12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent Sys-

tems
2016-13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Development in

West Africa - An ICT4D Approach
2016-14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
2016-15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Algorithms

and Experiments
2016-16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn from Human

Reward
2016-17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
2016-18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
2016-19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
2016-20 Daan Odijk (UVA), Context & Semantics in News & Web Search
2016-21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces: Automatic

Analysis of Player Behavior in the Interactive Tag Playground
2016-22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Systems
2016-23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
2016-24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An Iterative

and data model independent approach
2016-25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching and

Browsing Behavior

240 | SIKS Dissertation Series

2016-26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational Models
to Study the Role of Human Awareness and Control in Behavioural Choices, with
Applications in Aviation and Energy Management Domains

2016-27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
2016-28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on epi-

demic prediction and control
2016-29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems - Markets

and prices for flexible planning
2016-30 Ruud Mattheij (UvT), The Eyes Have It
2016-31 Mohammad Khelghati (UT), Deep web content monitoring
2016-32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks for

Crisis Organisations
2016-33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just one ex-

ample
2016-34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis, and En-

actment
2016-35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classification and

Recommendation
2016-36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction behavior

optimized for robot-specific morphologies
2016-37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computational

inquiry
2016-38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & Interaction

Design
2016-39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal Style

Selection for an Artificial Suspect
2016-40 Christian Detweiler (TUD), Accounting for Values in Design
2016-41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing In-

stitutional Design and Enactment Governance
2016-42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of Bilingual

Aligned Corpora
2016-43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From The-

ory to Practice
2016-44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
2016-45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
2016-46 Jorge Gallego Perez (UT), Robots to Make you Happy
2016-47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation net-

works
2016-48 Tanja Buttler (TUD), Collecting Lessons Learned
2016-49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic

Analysis
2016-50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational Perfor-

mance Alignment in IT-enabled Service Supply Chains

2017

2017-01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
2017-02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks using

Argumentation
2017-03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with

Autonomous Products and Reconfigurable Manufacturing Machines
2017-04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
2017-05 Mahdieh Shadi (UVA), Collaboration Behavior

SIKS Dissertation Series | 241

2017-06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
2017-07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
2017-08 Rob Konijn (VU), Detecting Interesting Differences: Data Mining in Health Insurance

Data using Outlier Detection and Subgroup Discovery
2017-09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspective

on Variation in Text
2017-10 Robby van Delden (UT), (Steering) Interactive Play Behavior
2017-11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter #an-

ticipointment
2017-12 Sander Leemans (TUE), Robust Process Mining with Guarantees
2017-13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social touch

through haptic technology
2017-14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling Player Traits

from Video Game Behavior
2017-15 Peter Berck (RUN), Memory-Based Text Correction
2017-16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern Search En-

gines
2017-17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
2017-18 Ridho Reinanda (UVA), Entity Associations for Search
2017-19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Information

Retrieval
2017-20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing: The

Role of Perceived Benefits, Costs and Visibility
2017-21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming (A

Play on Worlds)
2017-22 Sara Magliacane (VU), Logics for causal inference under uncertainty
2017-23 David Graus (UVA), Entities of Interest – Discovery in Digital Traces
2017-24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
2017-25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines, with

applications to Multimorbidity Analysis and Literature Search
2017-26 Merel Jung (UT), Socially intelligent robots that understand and respond to human

touch
2017-27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social Robots:

People’s Preferences, Perceptions and Behaviors
2017-28 John Klein (VU), Architecture Practices for Complex Contexts
2017-29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Performance: A Mod-

erated Mediation Model of Social Innovation, and Enterprise Governance of IT"
2017-30 Wilma Latuny (UvT), The Power of Facial Expressions
2017-31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
2017-32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
2017-33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation: A

Model of Computer-Mediated Activity
2017-34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
2017-35 Martine de Vos (VU), Interpreting natural science spreadsheets
2017-36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-

throughput Imaging
2017-37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Framework

that Enables Control over Privacy
2017-38 Alex Kayal (TUD), Normative Social Applications
2017-39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and com-

pressive sensing methods to increase noise robustness in ASR

242 | SIKS Dissertation Series

2017-40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human
Control in Relation to Emotions, Desires and Social Support For applications in
human-aware support systems

2017-41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental Pro-
cesses and a Smart Environment to Provide Support for a Healthy Lifestyle

2017-42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with applica-
tions on ADHD datasets

2017-43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
2017-44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics in Agile

Requirements Engineering
2017-45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
2017-46 Jan Schneider (OU), Sensor-based Learning Support
2017-47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
2017-48 Angel Suarez (OU), Collaborative inquiry-based learning

2018

2018-01 Han van der Aa (VUA), Comparing and Aligning Process Representations
2018-02 Felix Mannhardt (TUE), Multi-perspective Process Mining
2018-03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling, Model-

Driven Development of Context-Aware Applications, and Behavior Prediction
2018-04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in Data-

Centric Engineering Tasks
2018-05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Information Seek-

ing Process
2018-06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-

Technical Systems
2018-07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
2018-08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
2018-09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
2018-10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior change

through intelligent technology
2018-11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collaborative Net-

works
2018-12 Xixi Lu (TUE), Using behavioral context in process mining
2018-13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
2018-14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor Filters
2018-15 Naser Davarzani (UM), Biomarker discovery in heart failure
2018-16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of

children
2018-17 Jianpeng Zhang (TUE), On Graph Sample Clustering
2018-18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
2018-19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
2018-20 Manxia Liu (RUN), Time and Bayesian Networks
2018-21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and playing

scenario-based serious games
2018-22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the Spread of Be-

haviours, Perceptions and Emotions in Social Networks
2018-23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
2018-24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous

Telepresence Robots
2018-25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections

SIKS Dissertation Series | 243

2018-26 Roelof Anne Jelle de Vries (UT), Theory-Based and Tailor-Made: Motivational Mes-
sages for Behavior Change Technology

2018-27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software Analysis
2018-28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they

make you feel
2018-29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
2018-30 Wouter Beek, The "K" in "semantic web" stands for "knowledge": scaling semantics to

the web

2019

2019-01 Rob van Eijk (UL), Web privacy measurement in real-time bidding systems. A graph-
based approach to RTB system classification

2019-02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for Assessing
Class Size Uncertainty

2019-03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases: Extracting
Event Data from Real Life Data Sources

2019-04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
2019-05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
2019-06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked Cultural Her-

itage Datasets
2019-07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
2019-08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Processes
2019-09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy efficiency in soft-

ware systems
2019-10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and Pre-

diction
2019-11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behavioral

Engagement in MOOCs
2019-12 Jacqueline Heinerman (VU), Better Together
2019-13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content Generation
2019-14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior &

Improving Learning Outcomes in Massive Open Online Courses
2019-15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Partially Ob-

servable Environments
2019-16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral Constraint

(OCBC) Models
2019-17 Ali Hurriyetoglu (RUN), Extracting actionable information from microtexts
2019-18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
2019-19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
2019-20 Chide Groenouwe (UU), Fostering technically augmented human collective intelli-

gence
2019-21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery and Design

Pattern Detection
2019-22 Martin van den Berg (VU), Improving IT Decisions with Enterprise Architecture
2019-23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification
2019-24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing Labeled Data for Nat-

ural Language Processing
2019-25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image description
2019-26 Prince Singh (UT), An Integration Platform for Synchromodal Transport
2019-27 Alessandra Antonaci (OUN), The Gamification Design Process applied to (Massive)

Open Online Courses

244 | SIKS Dissertation Series

2019-28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare airline
pilots for critical situations

2019-29 Daniel Formolo (VU), Using virtual agents for simulation and training of social skills
in safety-critical circumstances

2019-30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
2019-31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics
2019-32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence in

Games
2019-33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artificial Neural

Networks
2019-34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network Features for

Classification of Epilepsy and PNES
2019-35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning programming
2019-36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master Complex

Skills
2019-37 Jian Fang (TUD), Database Acceleration on FPGAs
2019-38 Akos Kadar (OUN), Learning visually grounded and multilingual representations

2020

2020-01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour
2020-02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic

Graphical Models
2020-03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language Under-

standing
2020-04 Maarten van Gompel (RUN), Context as Linguistic Bridges
2020-05 Yulong Pei (TUE), On local and global structure mining
2020-06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Requirements

Elicitation - An Approach and Tool Support
2020-07 Wim van der Vegt (OUN), Towards a software architecture for reusable game compo-

nents
2020-08 Ali Mirsoleimani (UL), Structured Parallel Programming for Monte Carlo Tree Search
2020-09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital

Humanities Research
2020-10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining
2020-11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMethods for

Long-Tail Entity Recognition Models
2020-12 Ward van Breda (VU), Predictive Modeling in E-Mental Health: Exploring Applicabil-

ity in Personalised Depression Treatment
2020-13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing Evolu-

tionary Algorithms for Genetic Programming
2020-14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases
2020-15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for Configurable As-

sessments in Serious Games
2020-16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
2020-17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feedback from Multimodal

Experiences
2020-18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with Uncer-

tainties: Electricity Markets in Renewable Energy Systems
2020-19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems
2020-20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations
2020-21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it could be

SIKS Dissertation Series | 245

2020-22 Maryam Masoud Khamis (RUN), Understanding complex systems implementation
through a modeling approach: the case of e-government in Zanzibar

2020-23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to studying
writing processes using keystroke logging

2020-24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling, human? Towards
emotionally supportive chatbots

2020-25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining
2020-26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based

mixed-Integer opTimization
2020-27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an educational

context
2020-28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training complex

skills with augmented reality
2020-29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
2020-30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
2020-31 Gongjin Lan (VU), Learning better – From Baby to Better
2020-32 Jason Rhuggenaath (TUE), Revenue management in online markets: pricing and on-

line advertising
2020-33 Rick Gilsing (TUE), Supporting service-dominant business model evaluation in the

context of business model innovation
2020-34 Anna Bon (MU), Intervention or Collaboration? Redesigning Information and Com-

munication Technologies for Development
2020-35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Production

2021

2021-01 Francisco Xavier Dos Santos Fonseca (TUD), Location-based Games for Social Inter-
action in Public Space

2021-02 Rijk Mercuur (TUD), Simulating Human Routines: Integrating Social Practice Theory
in Agent-Based Models

2021-03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with Smart Devices
2021-04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive learning ana-

lytics for self-regulated learning
2021-05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems
2021-06 Daniel Davison (UT), "Hey robot, what do you think?" How children learn with a

social robot
2021-07 Armel Lefebvre (UU), Research data management for open science
2021-08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming on Com-

putational Thinking
2021-09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic and Non-Verbal

Robots to Promote Children’s Collaboration Through Play
2021-10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning
2021-11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vision
2021-12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
2021-13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding and Facilitat-

ing Predictability for Engagement in Learning
2021-14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their Support
2021-15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Resource Re-

Configurations through the Business Services Paradigm
2021-16 Esam A. H. Ghaleb (UM), Bimodal Emotion Recognition from audio-visual cues
2021-17 Dario Dotti (UM), Human Behavior Understanding from motion and bodily cues using

deep neural networks

246 | SIKS Dissertation Series

2021-18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making Tools and For-
mal Systems - Facilitating the Construction of Bayesian Networks and Argumentation
Frameworks

2021-19 Roberto Verdecchia (VU), Architectural Technical Debt: Identification and Manage-
ment

2021-20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided Exposure Bias
in Recommender Systems

2021-21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes
2021-22 Sihang Qiu (TUD), Conversational Crowdsourcing
2021-23 Hugo Manuel Proença (LIACS), Robust rules for prediction and description
2021-24 Kaijie Zhu (TUE), On Efficient Temporal Subgraph Query Processing
2021-25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining AI and Self-

Adaptation to Create Adaptive E-Health Mobile Applications
2021-26 Benno Kruit (CWI & VUA), Reading the Grid: Extending Knowledge Bases from

Human-readable Tables
2021-27 Jelte van Waterschoot (UT), Personalized and Personal Conversations: Designing

Agents Who Want to Connect With You
2021-28 Christoph Selig (UL), Understanding the Heterogeneity of Corporate Entrepreneur-

ship Programs

2022

2022-01 Judith van Stegeren (UT), Flavor text generation for role-playing video games
2022-02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisation: A Deep

Learning Journey

